Astronomy and planetary science articles within Nature Communications

Featured

  • Article
    | Open Access

    Magnetohydrodynamic (MHD) waves observed on the Sun help understanding solar plasma and involved processes. Here, the authors show resolved MHD waves in the solar corona displaying MHD lensing effect.

    • Xinping Zhou
    • , Yuandeng Shen
    •  & Chengrui Zhou
  • Article
    | Open Access

    Magnetohydrodynamic (MHD) wave mode conversion can occur when an MHD wave passes through a region where the plasma properties change. Here, the authors show direct observation of mode conversion from a fast-mode to a slow mode MHD wave near a 3D null point in the solar corona, which was as predicted by theory and MHD simulations.

    • Pankaj Kumar
    • , Valery M. Nakariakov
    •  & Kyung-Suk Cho
  • Article
    | Open Access

    The interstellar medium (ISM) is critical to galaxy evolution. Here, the authors show dust processing modelling applied to magnetohydrodynamic simulations to explicitly follow dust destruction by the combined effects of grain-grain collisions and ion-sputtering induced by a supernova blast wave in a turbulent multiphase, magnetized ISM.

    • Florian Kirchschlager
    • , Lars Mattsson
    •  & Frederick A. Gent
  • Article
    | Open Access

    Astrocombs serve as precision calibrators for astrophysical spectrographs by providing a regular sequence of optical lines on a multi-GHz grid. Here, the authors report the first broadband astrocomb in the UV to blue-green spectral region, where stellar absorption lines are most abundant.

    • Yuk Shan Cheng
    • , Kamalesh Dadi
    •  & Derryck T. Reid
  • Article
    | Open Access

    The current understanding of the origin and properties of cluster magnetic fields is limited by observational challenges. Here, the authors show that magnetic field orientations of galaxy clusters, including radio relic and radio halos, can be derived via combination of synchrotron intensity gradient technique with radio observations.

    • Yue Hu
    • , C. Stuardi
    •  & Ka Wai Ho
  • Article
    | Open Access

    Hypothetical dark photon (DP) dark matter (DM) and axion DM might resonantly convert into electromagnetic waves in the solar corona. Here, the authors show upper limits on the axion-photon coupling and on the kinetic mixing coupling of DPDM and photon within 30-80 MHz in the solar corona radio observations.

    • Haipeng An
    • , Xingyao Chen
    •  & Yan Luo
  • Article
    | Open Access

    Both particle and wave energy exist in plasma and energy transfer leads to many interesting phenomena like turbulence, particle acceleration. Here the authors show electron-scale coherent structure resulting from energy transfer in magnetosheath using a model and data from Magnetospheric Multiscale Mission.

    • Zi-Kang Xie
    • , Qiu-Gang Zong
    •  & Per-Arne Lindqvist
  • Article
    | Open Access

    Jets have been found in Earth’s magnetosheath for two decades and, more recently, also in Mars. Yet, their universal existence in planetary magnetosheath remains an open question. Here, authors report the presence of anti-sunward and sunward jets at Jupiter and compare them to Earth and Mars.

    • Yufei Zhou
    • , Savvas Raptis
    •  & Lan Ma
  • Article
    | Open Access

    On its way to Mercury, BepiColombo spacecraft made two flybys of Venus. Here, the authors show spectrally resolved measurements of Venus’ atmosphere during BepiColombo’s second flyby and reveal that Venusian atmosphere has been stable since 1980s.

    • Jörn Helbert
    • , Rainer Haus
    •  & Harald Hiesinger
  • Article
    | Open Access

    Mesospheric ghosts are rare, faint, greenish transient luminous events. Here, the authors show metallic emissions revealed by the spectrum of a mesospheric ghost.

    • María Passas-Varo
    • , Oscar Van der Velde
    •  & Joan Montanyà
  • Article
    | Open Access

    How and via which mechanism the energy transfers between scales in imbalanced Alfvénic turbulence is an open question. Here, the authors show that the energy transfer of imbalanced Alfvénic turbulence is completed by coherent interactions between Alfvén waves and co-propagating anomalous fluctuations.

    • Liping Yang
    • , Jiansen He
    •  & Ziqi Wu
  • Article
    | Open Access

    At high pressures, water and ammonia are known to exhibit superionic states. Here it is shown that many planetary ices (H-C-N-O compounds) exhibit a superionic state, and in some cases, a doubly superionic state, in which multiple elements diffuse simultaneously.

    • Kyla de Villa
    • , Felipe González-Cataldo
    •  & Burkhard Militzer
  • Article
    | Open Access

    Gamma-ray observations indicate that cosmic voids may host magnetic fields. Here, the authors show that relics of fields from the early Universe could be consistent with these observations if their decay is mediated by magnetic reconnection and conserves the mean square fluctuation level of magnetic helicity.

    • David N. Hosking
    •  & Alexander A. Schekochihin
  • Comment
    | Open Access

    The exploration of our solar system is being radically changed since the beginning of operations of the James Webb Space Telescope (JWST) in mid 2022. JWST’s extraordinary sensitivity and instrumentation allow for sensitive searches for the building blocks of life and to test for habitability, also enabling new discoveries on small bodies to giant planets across our solar system and beyond.

    • G. L. Villanueva
    •  & S. N. Milam
  • Article
    | Open Access

    Atomic oxygen is important for the photochemistry and energy balance of Venus’s atmosphere, but it was not directly observed on the dayside of Venus. Here, the authors show direct detection of atomic oxygen on the both dayside and nightside of Venus by measuring its ground-state transition at 4.74 THz.

    • Heinz-Wilhelm Hübers
    • , Heiko Richter
    •  & Helmut Wiesemeyer
  • Article
    | Open Access

    How solar wind and ionosphere contribution to the plasma in the magnetosphere during the development of geomagnetic storms changes is an open question. Here, the authors show a dynamic source change during a storm from solar wind to the ionosphere as the storm develops.

    • L. M. Kistler
    • , K. Asamura
    •  & I. Shinohara
  • Article
    | Open Access

    Mars lacks a global intrinsic magnetic field. Here, the authors show wedge-like dispersion structures of Hydrogen ions exhibiting butterfly-shaped distributions, which was previously found only in intrinsic magnetospheres.

    • Chi Zhang
    • , Hans Nilsson
    •  & Stas Barabash
  • Article
    | Open Access

    Models predict that giant planets should easily form around solar-type stars, but most radial velocity surveys found a rather low number of them. Here, the authors show that Jupiter-like planets may be more common than previously found, at least in low density environments.

    • Raffaele Gratton
    • , Dino Mesa
    •  & Elisabetta Rigliaco
  • Article
    | Open Access

    Axions are hypothetical particles that constitute leading candidates for the identity of dark matter. Here, the authors improve previous exclusion bounds on axion-like particles in the range of 1.4–200 peV, and report direct terrestrial limits on the coupling of protons and neutrons with axion-like dark matter.

    • Itay M. Bloch
    • , Roy Shaham
    •  & Or Katz
  • Article
    | Open Access

    Polarization of decayless kink oscillations of solar coronal loops provide unique information about involved excitation mechanisms and energy supply, but its detection remains elusive. Here, the authors show horizontal and weakly oblique linear polarization of such oscillations, which favors the energy supply by quasi-steady flows.

    • Sihui Zhong
    • , Valery M. Nakariakov
    •  & David Berghmans
  • Article
    | Open Access

    The homogeneity of Aluminium-26 (Al-26) isotope distribution in the accreting solar nebula is debated. Here, the authors show that the age determination of meteorite Erg Chech 002, compared with other igneous meteorites, indicates that Al-26 was heterogeneously distributed in the early Solar System.

    • Evgenii Krestianinov
    • , Yuri Amelin
    •  & Tommaso Di Rocco
  • Article
    | Open Access

    It is interesting and important to understand how the properties of nuclei and their stability change with temperature. Here the authors report their theoretical study of hot nuclei and the drip lines that limit the nuclear existence at finite temperature.

    • Ante Ravlić
    • , Esra Yüksel
    •  & Nils Paar
  • Article
    | Open Access

    Solid helium is predicted to become a metal at extraordinarily high pressures of 25 TPa. Here, the authors predict that helium becomes an excitonic insulator just below the metallization pressure, and a superconductor just above the metallization pressure.

    • Cong Liu
    • , Ion Errea
    •  & Claudio Cazorla
  • Article
    | Open Access

    BepiColombo mission had its first Mercury flyby on 1 October 2021. Here, the authors show plasma measurements taken during this flyby, which reveals that electron injections and subsequent energy-dependent drift is a universal mechanism generating aurorae in the planetary magnetospheres.

    • Sae Aizawa
    • , Yuki Harada
    •  & Go Murakami
  • Article
    | Open Access

    This study investigates the role of water in the lower-most stratosphere, affecting dynamics of the stratosphere and troposphere, and shows that common water vapor transport schemes can cause biases, present in nearly all modern climate models.

    • Edward Charlesworth
    • , Felix Plöger
    •  & Martin Riese
  • Article
    | Open Access

    Excess of l-amino acids in meteorites suggests an extraterrestrial origin of biomolecular homochirality, which may stem from chiral light-matter interactions. Here the authors support this hypothesis with asymmetric photolysis experiments on racemic isovaline films, showing that circularly polarized starlight can produce l-enantiomeric excesses that can be amplified during parent bodies’ alteration.

    • Jana Bocková
    • , Nykola C. Jones
    •  & Cornelia Meinert
  • Article
    | Open Access

    Although whistler-mode chorus waves are common in the Earth’s and other planetary magnetospheres, the mechanism behind fast frequency chirping is debated. Here, the authors show the presence of chorus emissions at Mars, with fundamentally the same nonlinear nature as those at Earth, despite vastly different magnetic and plasma conditions.

    • Shangchun Teng
    • , Yifan Wu
    •  & Xin Tao
  • Article
    | Open Access

    Long-term space missions to the Moon and Mars rely on sunlight as an energy source. Here, authors assess the performance of monolithic photoelectrochemical devices for light-assisted O2 and fuel production on the Moon and Mars as potential complementary technologies to existing life support systems.

    • Byron Ross
    • , Sophia Haussener
    •  & Katharina Brinkert
  • Comment
    | Open Access

    The samples returned from near-Earth asteroid (162173) Ryugu provide a pristine record of the 4.6 billion years since the birth of the Solar System. The Hayabusa2 initial analysis team has integrated a range of analytical techniques to investigate Ryugu’s organic chemistry. Here, we highlight their latest findings, the potential questions which may be answered, and provide an overview of new prospects in the decade to come.

    • Yasuhiro Oba
    • , Yoshinori Takano
    •  & Hiroshi Naraoka
  • Article
    | Open Access

    Blue Stragglers Stars (BSSs) are anomalously luminous main sequence stars in clusters. Here, the authors show evidence that the fraction of fast rotating BSSs increases for decreasing central density of the host system, suggesting fast spinning BSSs prefer low-density environments.

    • Francesco R. Ferraro
    • , Alessio Mucciarelli
    •  & Mario Mateo
  • Article
    | Open Access

    Kelvin-Helmholtz Instability (KHI) has been suggested as a significant source of geomagnetic activity during northward Interplanetary Magnetic Fields (IMF). Here, the authors show seasonal and diurnal variations of KHI at Earth’s magnetopause, highlighting the importance of Sun-earth geometry for space weather.

    • S. Kavosi
    • , J. Raeder
    •  & C. J. Farrugia
  • Article
    | Open Access

    The origin of the diffuse gamma-ray background (DGRB) is unknown. Here, the authors show that the integrated gamma-ray flux from clusters can contribute up to 100% of the DGRB flux observed by Fermi-LAT above 100 GeV.

    • Saqib Hussain
    • , Rafael Alves Batista
    •  & Klaus Dolag
  • Article
    | Open Access

    Low stellar ultraviolet (UV) radiation leads to low ozone abundances, therefore, less planetary UV protection. Here, the authors show that planets in the habitable zones of metal-poor stars, despite their higher UV radiation than metal-rich stars, are the best targets for search for life.

    • Anna V. Shapiro
    • , Christoph Brühl
    •  & Jos Lelieveld
  • Comment
    | Open Access

    A long-standing issue in astrobiology is whether planets orbiting the most abundant type of stars, M-dwarfs, can support liquid water and eventually life. A new study shows that subglacial melting may provide an answer, significantly extending the habitability region, in particular around M-dwarf stars, which are also the most promising for biosignature detection with the present and near-future technology.

    • Amri Wandel
  • Article
    | Open Access

    Kinetic Alfven Waves (KAWs) are ubiquitous in space plasmas. Here, the authors show that application of particle sounding technique to Magnetospheric Multiscale Mission data enables measuring perpendicular wavelength of KAWs.

    • Z.-Y. Liu
    • , Q.-G. Zong
    •  & G. Le
  • Article
    | Open Access

    Uracil was identified in the sample returned from the asteroid Ryugu. Having been provided to the early Earth as a component in such asteroidal materials, these molecules might have played a role for prebiotic chemical evolution on the early Earth

    • Yasuhiro Oba
    • , Toshiki Koga
    •  & Yuichi Tsuda