News & Comment

Filter By:

Article Type
Year
  • Sperm are unique cells, produced through the complex and precisely orchestrated process of spermatogenesis, in which there are a number of checkpoints in place to guarantee delivery of a high-quality and high-fidelity DNA product. On the other hand, reproductive pressure in males means that to produce more is, in very general terms, to perform better. Balancing quantity and quality in sperm production is thus a delicate process, subject to specific cellular and molecular control mechanisms, and sensitive to environmental conditions, that can impact fertility and offspring health. This Collection is focused on these aspects of sperm biology, as well as their impact on reproductive performance and male infertility.

    • Ricardo P. Bertolla
    EditorialOpen Access
  • There have been increasingly lively discussions about many published scientific results failing validation by independent studies. This so-called reproducibility crisis has led to particularly strong criticism of methodological weaknesses in animal research. Inappropriate statistical methods, poor experimental design, and extreme standardization in trial design are some contributing factors to the problem. The purpose of this Collection is to present original methodologies to improve the status quo and additionally to report meta-research about the reproducibility of published animal research.

    • Florian Frommlet
    EditorialOpen Access
  • Agriculture must overcome several challenges in order to increase—or even maintain—production, while also reducing negative environmental impact. Nanotechnology, fundamentally through the development of smart delivery systems and nanocarriers, can contribute to engineering more efficient and less contaminant agrochemicals. This Collection presents recent related works, covering nanodevices that improve crop protection against pests and diseases, nanoformulations for enhancing plant nutrition, and nanomaterials strengthening the general crop performance.

    • Alejandro Pérez-de-Luque
    EditorialOpen Access
  • Detecting clinically relevant diagnostic biomarkers, suitable for point-of-care detection, may facilitate rapid treatment and prevention of disease. However, medical diagnosis for which there are limited quantities of testable tissue or fluid, require point-of-care technologies with superior sensitivity and specificity. The purpose of this Editorial is to provide an overview of the Collection’s content, comprising original research into fluidics-based diagnostic platforms—specifically those made of paper or other low-cost materials, that can suitably operate with tiny sample volumes from mL to nL. In particular, we will focus on the clinical applications of such research, with potential uses in a number of fields including combating the COVID-19 pandemic for instance.

    • Chao-Min Cheng
    EditorialOpen Access
  • 3D bioprinting has emerged as a promising new approach for fabricating complex biological constructs in the field of tissue engineering and regenerative medicine. It aims to alleviate the hurdles of conventional tissue engineering methods by precise and controlled layer-by-layer assembly of biomaterials in a desired 3D pattern. The 3D bioprinting of cells, tissues, and organs Collection at Scientific Reports brings together a myriad of studies portraying the capabilities of different bioprinting modalities. This Collection amalgamates research aimed at 3D bioprinting organs for fulfilling demands of organ shortage, cell patterning for better tissue fabrication, and building better disease models.

    • Madhuri Dey
    • Ibrahim T. Ozbolat
    EditorialOpen Access
  • Neuromorphic systems are currently experiencing a rapid upswing due to the fact that today's CMOS (complementary metal oxide silicon) based technologies are increasingly approaching their limits. In particular, for the area of machine learning, energy consumption of today's electronics is an important limitation, that also contributes toward the ever-increasing impact of digitalization on our climate. Thus, in order to better meet the special requirements of unconventional computing, new physical substrates for bio-inspired computing schemes are extensively exploited. The aim of this Guest Edited Collection is to provide a platform for interdisciplinary research along three main lines: memristive materials and devices, emulation of cellular learning (neurons and synapses), and unconventional computing and network schemes.

    • Martin Ziegler
    EditorialOpen Access
  • Extracellular vesicles (EVs) represent a new paradigm, both in cell biology and medicine; specifically, the idea that functional content itself may be delivered directly to cells. EVs are cell-derived membranous structures that work as intercellular communicators exerting their function by transporting their cargo that includes nucleic acids, proteins and lipids. EVs play an essential role in normal physiology, but also in pathological communication, for instance, in cancer, EVs are thought to deliver oncogenic molecules (such as proteins, peptides, RNAs…) to neighboring cells, enhancing propagation of neoplastic cells. Not surprisingly, EV research has become common-place in every field of biomedicine, being explored as diagnostics and therapeutics.

    This Collection gathers original Articles that investigate the application of extracellular vesicles on diagnostics and therapeutics, and that report advances in the knowledge of EV biology and the methodological tools for their study.

    • Joana Maria Ramis
    EditorialOpen Access
  • Radioisotopes can be produced artificially from stable nuclei through the interaction with particles or highly energetic photons. In combination with modern detection and counting techniques, radioisotopes and radiochemical methods uniquely contribute to the health sciences. This Collection showcases salient aspects of medical radioisotope science ranging from the production, recovery and purification of radioisotopes to the methods used to attach them to biomolecules. The Collection also presents studies that highlight the importance of radiochemistry in the assessment of environmental radioactivity.

    • Michael E. Fassbender
    EditorialOpen Access