Satellite

Two decades of fumigation data from the Soybean Free Air Concentration Enrichment facility

  • Elise Kole Aspray
  • Timothy A. Mies
  • Elizabeth A. Ainsworth
Data Descriptor

Advertisement

  • Ensuring the integrity of research data is crucial for the accuracy and reproducibility of any data-based scientific study. This can only be achieved by establishing and implementing strict rules for the handling of research data. Essential steps for achieving high-quality data involve planning what data to gather, collecting it in the correct manner, and processing it in a robust and reproducible way. Despite its importance, a comprehensive framework detailing how to achieve data quality is currently unavailable. To address this gap, our study proposes guidelines designed to establish a reliable approach to data handling. They provide clear and practical instructions for the complete research process, including an overall data collection strategy, variable definitions, and data processing recommendations. In addition to raising awareness about potential pitfalls and establishing standardization in research data usage, the proposed guidelines serve as a reference for researchers to provide a consistent standard of data quality. Furthermore, they improve the robustness and reliability of the scientific landscape by emphasising the critical role of data quality in research.

    • Gregor Miller
    • Elmar Spiegel
    CommentOpen Access
  • A key source of biodiversity preservation is in the ex situ storage of seed in what are known as germplasm banks (GBs). Unfortunately, wild species germplasm bank databases, often maintained by resource-limited botanical gardens, are highly disparate and capture information about their collections in a wide range of underlying data formats, storage platforms, following different standards, and with varying degrees of data accessibility. Thus, it is extremely difficult to build conservation strategies for wild species via integrating data from these GBs. Here, we envisage that the application of the FAIR Principles to wild species and crop wild relatives information, through the creation of a federated network of FAIR GB databases, would greatly facilitate cross-resource discovery and exploration, thus assisting with the design of more efficient conservation strategies for wild species, and bringing more attention to these key data providers.

    • Alberto Cámara Ballesteros
    • Elena Aguayo Jara
    • Mark D. Wilkinson
    CommentOpen Access
  • The release of ChatGPT has triggered global attention on artificial intelligence (AI), and AI for science is thus becoming a hot topic in the scientific community. When we think about unleashing the power of AI to accelerate scientific research, the question coming to our mind first is whether there is a continuous supply of highly available data at a sufficiently large scale.

    • Yongchao Lu
    • Hong Wang
    • Hang Su
    CommentOpen Access
  • We present an extension to the Brain Imaging Data Structure (BIDS) for motion data. Motion data is frequently recorded alongside human brain imaging and electrophysiological data. The goal of Motion-BIDS is to make motion data interoperable across different laboratories and with other data modalities in human brain and behavioral research. To this end, Motion-BIDS standardizes the data format and metadata structure. It describes how to document experimental details, considering the diversity of hardware and software systems for motion data. This promotes findable, accessible, interoperable, and reusable data sharing and Open Science in human motion research.

    • Sein Jeung
    • Helena Cockx
    • Julius Welzel
    CommentOpen Access
  • Developing Earth science data products that meet the needs of diverse users is a challenging task for both data producers and service providers, as user requirements can vary significantly and evolve over time. In this comment, we discuss several strategies to improve Earth science data products that everyone can use.

    • Zhong Liu
    • Tian Yao
    CommentOpen Access
  • Curated resources that support scientific research often go out of date or become inaccessible. This can happen for several reasons including lack of continuing funding, the departure of key personnel, or changes in institutional priorities. We introduce the Open Data, Open Code, Open Infrastructure (O3) Guidelines as an actionable road map to creating and maintaining resources that are less susceptible to such external factors and can continue to be used and maintained by the community that they serve.

    • Charles Tapley Hoyt
    • Benjamin M. Gyori
    CommentOpen Access