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Localized regions of exceptionally high recom-
bination rate in the human genome attracted 
a great deal of attention when it was suggested 
that they might punctuate the genome into 
blocks of high linkage disequilibrium (LD)1. 
If most human recombination were punc-
tate, it could mean that fewer SNPs would be 
needed for whole-genome association test-
ing, making this approach for gene mapping 
much more feasible. The existence of local 
hot spots of recombination is unequivocally 
supported by single-sperm genotyping (Fig. 
1a), which shows that recombination events 
in a small number of regions show sharply 
defined clustering2,3. Indirect inference of 
local spikes in the ‘population recombina-
tion rate’ (Fig. 1b), a parameter that arises 
in the population genetics theory of LD, also 
suggested that recombination might be local-
ized4. It was especially heartening when these 
two approaches seemed to converge in identi-
fying the same hot spots5,6, as it implied that 
the costly and time-consuming method of 
single-sperm genotyping, which allows direct 
testing of meiotic crossover rates, could be 
replaced by indirect estimates based on SNP 
genotype counts. On page 601 of this issue,  
we see the first exception to this pattern, as 
Jeffreys et al.7 show that there can be true 
recombination hot spots in regions where 
LD remains high.

Sperm genotyping
Single-sperm genotyping can yield recom-
bination rate estimates at very fine scales 
because it allows for sample sizes large 

enough to detect rare events reliably2,3. But 
the high expense and effort of genotyping 
single sperm to infer recombination at short 
intervals has resulted in only a few regions 
being studied. This is unfortunate because 
the sperm typing data provides the only 
unambiguous and direct scoring of recom-
binants at the fine scale needed to identify 
hot spots. Sperm typing has also shown 
that there is extensive variation in the loca-

tion and intensity of hot spots8. The issue of 
variability is especially important because it 
could shed light on the mechanism for hot-
spot formation. In addition, such variability 
could contribute to population-specific dif-
ferences in LD9.

At present, we have not defined the extent 
of population variability in recombination 
hot-spot location or intensity as assessed by 
sperm typing. A technology that allows large-
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Figure 1 Methods for inferring recombination hot spots. (a) Sperm genotyping. By diluting sperm to 
the level of single cells, whole-genome amplification will yield products from single haploid cells. 
These single-sperm amplicons can then by genotyped by a variety of PCR-based methods, allowing 
one to score recombination rates between each pair of SNPs by directly counting recombinants. 
(b) Population recombination rate can be estimated indirectly from the pattern of LD derived from 
genotypes of diploid individuals. Statistical methods infer estimates of ρ = 4Nr that are most 
compatible with the data.
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scale sperm genotyping across many genomic 
positions in multiple individuals from several 
population groups would help to clarify sev-
eral issues about the stability and generality 
of recombination hot spots. But even with 
such a technology, single-sperm genotyping 
has the shortcomings of not accounting for 
female recombination and not being able to 
identify hot spots on the nonpseudoautoso-
mal portions of the X chromosome. Sperm 
typing also involves a bit of statistical infer-
ence, as only recombinants are scored by PCR 
and the nonrecombinant count must be esti-
mated. Even more fundamentally, if recom-
bination rates vary among individuals and 
over time, then an instantaneous snapshot 
of recombination from a few individuals will 
fail to capture the past historical landscape of 
recombination.

Recombination and LD
A population in drift-recombination balance 
for neutral polymorphism will have an inverse 
relation between the steady state level of LD 
and the rate of recombination10. This theory 
shows that the signature of recombination in 
population sample data is always confounded 
with the population size (because random 
drift generates LD). In fact, many factors 
besides recombination will impact the degree 
of LD between SNPs, including mutation, 
selection, migration, bottlenecks and random 
drift. But at a megabase scale, there is very 
good correspondence between the inferred 
rate of population recombination and local 
intensity of meiotic recombination (in cM 
Mb–1), presumably because these other fac-
tors average out5. Rate estimation is based on 
an approximate method known as composite 
likelihood11, which seems to work unexpect-
edly well given its underlying assumption 
of independence across site-pairs. At a finer 
scale, hot spots of recombination have been 
inferred by contrasting the likelihood of the 
data under a neutral coalescent model assum-
ing either homogeneous recombination or 
the presence of a hot spot4–6,12. The statisti-
cal methods have mostly been tested by their 
ability to identify hot spots introduced artifi-
cially in simulated data. Thus, apart from the 
TAP2 recombination hot spot3, the new work 
of Jeffreys et al.7 provides the first real test of 
statistical hot-spot detection.

By scoring 200 SNPs across a 206-kb region 
of chromosome 1 in 80 European men, Jeffreys 
et al.7 identified seven hot spots by statistical 
inference. They then tested these hot spots by 
single-sperm genotyping in the men whose 
SNP genotypes allowed it and confirmed 
that all seven had elevated recombination. 
But sperm typing identified an additional 
recombination hot spot that showed no sta-
tistical signature. This is a small sample from 
which to infer generalities about rates of false 
positive and false negative errors, but the one 
exception is enough to make one wonder why 
LD could be so high across a recombination 
hot spot.

The suggestion that hot spots may be tran-
sient raises the question of whether hot spots 
are stable in comparisons of closely related 
species. Recent analyses of polymorphisms 
in chimpanzees have shown that LD-based 
inferences of hot spots in humans and chim-
panzees are widely divergent13,14. One might 
be tempted to question the statistical infer-
ence of the hot spots, as single-sperm typ-
ing has not been done in chimpanzees. But 
even the sharpest critic would agree that the 
LD landscapes of humans and chimps dif-
fer markedly. The data suggest that hot spots 
are rather transitory in both genomes and 
that despite the mere 1% divergence in DNA 
sequence, there are radical differences in the 
signals that dictate recombination rates. This 
becomes more plausible when one notes that 
hot-spot activity also differs widely among 
yeast strains15. Perhaps in this light, it is not 
surprising to find evidence for variation and 
transience in hot spots in humans, as sug-
gested by Jeffreys et al.7

The ideas that recombination hot spots are 
moving about at such a high rate that there 
is virtually no shared ancestral positioning 
between humans and chimps and that they 
are so fluid that even in humans there is great 
variability in their position and degree raise 
a series of questions that are fundamental to 
our understanding of recombination and the 
evolution of genomes. At the root of these 
questions is the mechanism: what determines 
the position and intensity of a hot spot? Is it 
heritable? Should we replace our view of the 
human genetic map with a model more akin 
to statistical mechanics, where in each interval 
there is a probability cloud for recombination 

hot spots, and each individual is an epigenetic 
realization of a draw from this probability 
density? If so, how does this impact our use 
of linkage for association studies? Are differ-
ences in patterns of LD across human popu-
lations driven more by hot-spot variation or 
by local demographic differences? Are the hot 
spots detected by statistical inference simply 
the ones that have stayed in one position long 
enough and in enough individuals to have left 
a signature in eroded LD?

At the coarse level of pedigree analysis, 
averaging out the wild variability in recom-
bination over many small intervals gives a 
well-behaved mean rate (just as Newtonian 
physics is not rendered useless by quantum 
mechanics). But when we consider using sta-
tistically inferred recombination as a tool for 
association mapping at a finer level, perhaps 
we need to understand more thoroughly the 
root causes for fine-scale variation in recom-
bination rates. On the other hand, from the 
point of view of complex trait mapping, the 
statistically inferred recombination is of 
more direct relevance, because it quantifies 
an average strength of statistical associa-
tions across sites. Ultimately, it seems that 
the greatest gaps in our understanding of hot 
spots will best be filled by understanding the 
mechanism behind their formation. And, if 
the past offers any guidance, experiments 
with model organisms will continue to pave 
the way.
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