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Evolutionary pressures due to variation in climate play an important role in shaping phenotypic variation among and
within species and have been shown to influence variation in phenotypes such as body shape and size among humans.
Genes involved in energy metabolism are likely to be central to heat and cold tolerance. To test the hypothesis that
climate shaped variation in metabolism genes in humans, we used a bioinformatics approach based on network theory
to select 82 candidate genes for common metabolic disorders. We genotyped 873 tag SNPs in these genes in 54
worldwide populations (including the 52 in the Human Genome Diversity Project panel) and found correlations with
climate variables using rank correlation analysis and a newly developed method termed Bayesian geographic analysis.
In addition, we genotyped 210 carefully matched control SNPs to provide an empirical null distribution for spatial
patterns of allele frequency due to population history alone. For nearly all climate variables, we found an excess of
genic SNPs in the tail of the distributions of the test statistics compared to the control SNPs, implying that metabolic
genes as a group show signals of spatially varying selection. Among our strongest signals were several SNPs (e.g., LEPR
R109K, FABP2 A54T) that had previously been associated with phenotypes directly related to cold tolerance. Since
variation in climate may be correlated with other aspects of environmental variation, it is possible that some of the
signals that we detected reflect selective pressures other than climate. Nevertheless, our results are consistent with the
idea that climate has been an important selective pressure acting on candidate genes for common metabolic disorders.
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Introduction

The ability to cope with heat and cold stress is important
for survival and reproduction of organisms in general, and
especially for those exposed to extreme temperatures [1]. If
phenotypes that increase heat or cold tolerance were acted
upon by natural selection, the genes responsible for these
phenotypes would be expected to carry detectable signatures
of selection in the spatial distribution of genetic variation.
Indeed, latitudinal clines of allele frequencies have been
observed for several polymorphisms in humans (e.g. [2,3]) as
well as in natural populations of model organisms, including
Drosophila melanogaster (e.g. [4–8]), and Arabidopsis thaliana ([9–
11]). Interestingly, many of the variants with latitudinal clines
in Drosophila reside in genes involved in energy metabolism.

Adaptations to spatially varying selective pressures, such as
climates, may be particularly important in human popula-
tions. Because the human species first arose in equatorial
Africa, the ability to tolerate high temperatures was likely
under strong long-term selection in ancestral human pop-
ulations. As humans spread out of equatorial Africa to
regions at higher latitudes, cold temperatures likely became
important selective forces. As a consequence, traits under
stabilizing selection at near-equatorial latitudes may have
become deleterious at higher latitudes. In addition to thermal
stress, this scenario is likely to apply to a range of selective
pressures, e.g. exposure to UV radiation and to different
pathogens, which may be directly influenced by and partly
correlated with climate. A striking example of adaptation to
an environmental variable is variation in skin pigmentation, a
phenotype known to vary worldwide as a function of UV

radiation [12]. Consistent with the notion that variation in
skin pigmentation is adaptive, genome-wide scans for
selection have detected strong signals at candidate genes for
melanin production and melanocyte function [13–18]. An-
other possible example of spatial variation in selective
pressures is sodium homeostasis. It was proposed that
climate-related selection acted on the genes influencing salt
and water retention and that variation in the intensity of
selection partly accounts for the large inter-ethnic differ-
ences in the prevalence of salt-sensitive hypertension [19,20].
In support of this hypothesis, two recent studies reported a
strong correlation between the frequencies of candidate risk
variants for hypertension and latitude; this correlation was
significant also when compared to that observed for a
genome-wide set of random markers [21,22].
In addition to skin pigmentation and sodium homeostasis,

human body shape and size also show clines with climate
variables, suggesting that humans conform to the classical
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ecological rules that individuals inhabiting colder regions are
bulkier and have shorter relative limb lengths [23,24]. More
specifically, classical work by Roberts showed that mean
annual temperature is significantly correlated with body mass
and relative sitting height [25]. Forty years later, a re-
examination of body mass measures found a strong correla-
tion with mean annual temperature, but the slope of the
correlation was smaller, probably due to nutritional changes
in a subset of populations [26]. These results imply that
climate had a strong influence on human morphology.
Importantly, this influence can be detected even though,
due to climate changes and population movements, the
current climate conditions are only weak proxies for the
long-term climate experienced by each population. In
addition to clines of body mass measures, it was shown that
basal metabolic rate is consistently elevated in indigenous
circumpolar populations of North America and Siberia [27].
Although not all of this phenotypic variation has a genetic
basis, these findings suggest that the metabolic state of
individuals differs across populations and that this variation
has adaptive significance.

The biological processes that influence tolerance to
climatic extremes are likely to play important roles in the
pathogenesis of common metabolic disorders, such as type 2
diabetes (T2D), obesity, dyslipidemia, and hypertension. For
example, obesity risk is likely to be related to variation in
energy balance, through variation in food intake, body mass
index, and basal metabolic rate. Additional examples include
the relationships between T2D risk and variation in blood
glucose levels, between lipid levels and intake, processing and
storage of lipids, and between hypertension risk and sodium
retention and arterial vessel tone. Therefore, susceptibility
genes for these common metabolic disorders are promising
candidate targets of climate adaptations. Interestingly, these
phenotypes tend to co-occur in individuals, an observation
that gave rise to the definition of the metabolic syndrome as a
clustering of quantitative phenotypes related to T2D, obesity,

hypertension and dyslipidemia [28,29]. The clustering in
individuals, along with their concomitant increase in preva-
lence, suggests that these diseases result from a set of shared
metabolic defects and that these defects are adaptations to
the life style, diet and climates experienced by human
populations over long-term evolutionary time [20,30,31].
With the goal of selecting genes that experienced similar

selective pressures, we used a bioinformatics approach that
aims to characterize the core gene subnetwork of the
metabolic syndrome phenotypes [32]. The genes in this
subnetwork are likely to harbor those shared metabolic
defect(s) that result in the clustering of metabolic disorders.
To test the hypothesis that these genes adapted to the
different climates experienced by human populations, we
captured genetic variation in these genes by tag SNPs, which
were genotyped in a worldwide panel of individuals [33].
Statistical tests were then performed to detect spatial
patterns of allele frequencies that reflect the action of
climate-related selective pressures. We find that these genes,
as a group, harbor an excess of tag SNPs whose allele
frequencies are correlated with climate variables. This
suggests that climate was an important selective pressure
acting on the biological processes underlying common
metabolic disorders.

Results

To identify spatial patterns of allele frequencies that result
from adaptations to climate, we analyzed newly collected
genotype data for 1083 SNPs in a worldwide panel of 1034
individuals from 54 populations, 52 of which belong to the
Human Genome Diversity Project (HGDP) panel [33]. Of the
1083 SNPs, 873 are tag SNPs in 82 genes belonging to the core
network of the metabolic syndrome phenotypes and 210 are
control SNPs from unconstrained genomic regions. We
characterized the signal of spatially varying selection in terms
of the correlation between allele frequencies and four
summaries of climate. To assess the significance of the
correlation between genic SNP allele frequencies and climate,
we compared the patterns observed at genic and control
SNPs. In this analysis, the control SNPs are meant to provide
an empirical null distribution for the spatial patterns of
variation generated by human population history alone.
Finally, to explore the performance of our approach in an
empirical setting, we genotyped tag SNPs from a gene,
SLC24A5, which is known to influence variation in skin
pigmentation [13].

Selection of Candidate Genes in the Metabolic Syndrome
Core Subnetwork
In order to select a broad set of genes playing a role in

metabolic disease phenotypes, we used a network-based
algorithm, referred to as Molecular Triangulation [32], which
uses ‘‘seed genes’’, i.e. genes previously implicated in disease
risk, to search through the total network of gene-gene
interactions to define the disease sub-network. The seed
genes can be thought of as casting a shadow on the network,
the size of which is proportional to the strength of the
evidence implicating the seed in the disease phenotype.
Therefore, a non-seed gene interacting with a strongly
supported seed gene has a high probability of belonging to
the disease subnetwork; note that the disease subnetwork will
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Author Summary

The human species inhabits a wide geographical range encompass-
ing a diversity of climates, and adaptation to these climates likely
played an important role in shaping genetic and phenotypic
variation among populations. We hypothesized that spatially
varying selective pressures related to climate shaped the frequen-
cies of genetic variants in the energy metabolic pathway. To test this
hypothesis, we examined patterns of genetic variation in 82
candidate genes for common metabolic disorders across the 52
globally dispersed populations of the Human Genome Diversity
Project. We applied a combination of statistical approaches to test
whether the geographic distribution of these variants could be
accounted for by differing climates, consistent with a signal of
spatially varying positive selection. For several climate variables, we
observed signals in excess of that expected from human population
history and chance alone. Significantly, many of these signals were
from genes previously shown to affect cold tolerance and disease
risk. Our results provide evidence that variation among human
populations in susceptibility to common metabolic diseases may be
due, in part, to different histories of selective pressures on genes in
these disease pathways. Furthermore, our results point to additional
genes and variants that are suitable targets for follow-up disease
association studies.



include both seed and non-seed genes, all prioritized based
on the network analysis.

To create the total gene network, we compiled a list of
human gene-gene interactions from databases containing
data from automated and human-curated literature extrac-
tion methods (BIND, preBIND, MIPS, MINT, and GeneWays)
[34–38] as well as from two large-scale yeast two-hybrid
studies that used human proteins [39,40]. This total inter-
action network contains 12,743 genes and 224,269 non-
redundant gene-gene interactions.

To choose the seed genes, we conducted a large-scale
literature review to identify genes that had been implicated in
the etiology of T2D, obesity, hypertension, and dyslipidemia,
separately, or of the metabolic syndrome as a phenotype.
Each gene was scored depending on whether it was
implicated in a given phenotype based on data from
association studies (single and meta-analyses), animal models
of the disease, pharmacological and physiological studies, or
studies of the Mendelian form of the disease (seed genes for
each phenotype are listed in Tables S1–S5). This information
was combined to create a primary evidence score for each
seed gene that summarizes the strength of the evidence
implicating it in a given disease phenotype. The Molecular
Triangulation algorithm uses the primary evidence scores
and the total network to calculate a secondary evidence score
(a function of the primary evidence scores and distances from
all seed genes) for each gene and disease; the significance of
the secondary evidence score is assessed by permutations [32].
The permutation-based p-values were combined across
phenotypes for each gene and were used to rank all the
genes in the total network (i.e. both seeds and non-seeds),
separately. The highest ranking 39 seed and 35 non-seed
genes (excluding genes that were poorly tagged in the
HapMap data) were selected for analysis.

Because current knowledge of the true human gene-gene
interaction network is incomplete, not all seed genes are
found in the total network (e.g. TCF7L2) and not all strong
candidate genes are identified as high ranking genes by the
network analysis (e.g. PPARG). Therefore, we also selected an
additional 8 genes with strong evidence of involvement in
metabolic syndrome phenotypes. These genes are: PPARG,
PPARGC1A, LEPR, TCF7L2, CLOCK, ALMS1, RAPTOR and
FRAP1. PPARG, PPARGC1A, LEPR and TCF7L2 were chosen
because variation in these genes has repeatedly been found to
be associated with T2D risk and/or metabolic syndrome risk
[41–47]. CLOCK and ALMS1 were included because they are
strong functional candidates for metabolic syndrome [48–51].
RAPTOR was chosen because we previously observed an
especially strong correlation between a microsatellite within
this gene and latitude (Witonsky and Di Rienzo, unpublished
data); this microsatellite had been genotyped in the HGDP at
the Marshfield Clinic Center for Human Genetics [52]. In
addition, the products of RAPTOR and FRAP1 form a protein
complex that has been implicated in energy metabolism and
T2D pathways [53]. In total, we included 82 genes in the
analysis (listed in Table S6).

Testing for Spatially Varying Selection
We used the HapMap Phase II data [54] to select 873

tagging SNPs that capture most of the variation in the 82
candidate genes (see Methods). In addition, we selected 210
control SNPs. The control SNPs were chosen from non-

coding regions that do not contain and are not tightly linked
to evolutionarily constrained sequence elements. In order not
to introduce a bias, the same ascertainment scheme was used
to select genic and control SNPs (except that only one tag
SNP was chosen at random from each control region) (for
details, see Materials and Methods). A total of 1,083 SNPs
typed in 964 individuals from the HGDP panel as well as in 37
Ewondo Beti and 33 Hausa from Cameroon yielded genotype
data that passed our data quality filter (see Methods).
To check that the control SNPs were appropriately

matched to the genic SNPs, we calculated the minor allele
frequency and FST for each SNP in our data and compared
the frequency distributions of these two statistics between the
two sets of SNPs. A global FST value, based on the average
squared deviation between regional allele frequencies and the
global average ([55] p. 167), was calculated among the seven
major geographical regions defined by Rosenberg et al. 2002
[56]. Using a two-sample Kolmogorov-Smirnov test, we found
no significant difference between the distributions of genic
and control SNPs for minor allele frequency (D ¼ 0.058, p ¼
0.61) or FST (D ¼ 0.070, p ¼ 0.38). This suggests that our
procedure for matching genic and control SNPs is reliable
and that the control SNPs can provide an appropriate
empirical null distribution for spatial patterns of variation
expected for putatively neutral regions.
To test the hypothesis that climate-related selection shaped

variation in the candidate genes, we obtained climate data for
each population in our panel. We selected six climate
variables likely to reflect the physiological effects of cold
and hot climates (i.e. precipitation rate, relative humidity,
minimum temperature, maximum temperature, mean tem-
perature and short wave radiation flux). Separate values for
summer and winter seasons were obtained for each of these
variables. Since many of these variables are strongly
correlated with one another, we reduced the dimensionality
of the climate data using principal components analysis. In all
analyses, we used the first two principal components (PCs) for
each season, which together explained 77.6% and 78.6% of
the variance in the complete data set for summer and winter
variables, respectively (Tables S7 and S8). It should be noted
that because of climate changes and population movements
over evolutionary time, the current values of these climate
variables may be only partially correlated with the long-term
climatic conditions experienced by each population.
To assess the relationship between SNP allele frequency

and climate, we used two methods that make different
assumptions and, therefore, may be complementary. The
first one, Spearman rank correlation, is a non-parametric
method that does not assume a linear relationship between
the variables. The second one, which will be denoted Bayesian
geographic analysis, is a newly developed method that tests
whether a linear relationship between allele frequency and a
climate variable provides a significantly better fit than the
null model alone, where the population covariance matrix
provides the basis for the null model (Coop et al., in
preparation). With both methods, statistical significance was
assessed against the distribution of the test statistic calculated
from the set of control SNPs. Although the use of control
SNPs may be conservative [57], here it is necessary to reduce
the number of spurious signals that would arise from the
genome-wide correlation between allele frequencies and
climate variables. Indeed, the control SNPs show an excess
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of significant correlations with all climate variables, as
assessed against the theoretical null distribution (see Figure
S1).

Signals of Spatially Varying Selection on Metabolism
Genes

We found that many genic SNPs had significant spatial
patterns with climate variables (absolute latitude, summer
PC1, summer PC2, winter PC1, winter PC2). To assess the
evidence for climate adaptations in metabolism genes, we
asked if genic SNPs as a group show an excess of signals for
spatially varying selection. Our expectation was that, even if
climate had exerted a strong selective pressure on these
genes, only a fraction of genic SNPs would show evidence for
spatially varying selection. Therefore, we asked if there was an
excess of SNPs in the tail of the distribution of empirical p-
values for the genic SNPs for several type I error (a) levels. As
shown in Table 1, we found an excess of genic SNPs with p-
values above the type I error rate for most climate variables.
To rule out the possibility that this pattern was driven by
linkage disequilibrium in a few genes with strong signals, we
bootstrap resampled across genes and control SNPs and
determined how often we found an excess (for details, see
Materials and Methods). The RAPTOR gene had been
included in our survey because of a known correlation
between latitude and a microsatellite within this gene
(Witonsky and Di Rienzo, unpublished data); therefore,
RAPTOR was omitted from this analysis. (When RAPTOR
was included in this analysis, we obtained similar results; see
Table S9.) This analysis revealed strong signals for summer
PC1 and winter PC1, consistent with the idea that these
summaries of climate variables reflect important selective
pressures that shaped the spatial distribution of allele
frequencies of metabolism genes in humans. Note that these
two PCs are not strongly correlated with each other as they
summarize somewhat different aspects of climate (i.e. relative
humidity, short-wave radiation flux and precipitation for
summer PC1 and temperature variables for winter PC1) (see
Table S7). Interestingly, the Bayesian geographic analysis
tends to detect a stronger signal compared to the rank
correlation analysis. Computer simulations showed that,
under some scenarios, the Bayesian analysis is more powerful

than the rank correlation analysis (G. Coop, unpublished
observations); therefore, it is possible that the difference is
simply due to a difference in power.
Next, we considered the signals of spatially varying

selection at individual SNPs; for this analysis, we focused on
SNPs that are significant across both methods on the
assumption that they represent the most robust signals. We
found 72 SNPs in 32 genes that were in the top 5% of the
empirical null distribution (i.e. the control SNP distribution)
with the same climate variable for both methods (Table 2). At
the 0.01 significance level, there were four SNPs in two genes
(FABP2 and RAPTOR) significant with latitude, nine SNPs in
six genes (CD36, DSCR1, MAPK14, PON1, SOD1, and TCF7L2)
with summer PC1, four SNPs in four genes (CETP, DSCR1,
EGFR, and NPPA) significant with summer PC2, ten SNPs in
five genes significant with winter PC1 (EPHX2, LEPR, MAPK1,
RAPTOR, and UCP3) and two SNPs in two genes (LPA and
MMRN1) significant with winter PC2. In total, 26 SNPs in 17
genes had empirical p , 0.01 with both analysis methods. Of
these 17 genes, eight were seed genes, six were non-seed genes
and three were other candidates.
Although we did not detect an enrichment of signals of

spatially varying selection at non-synonymous SNPs, several
genes carry particularly strong signals at a nonsynonymous
SNP. The gene coding for the leptin receptor, LEPR, is among
the strongest signals detected by our analysis. LEPR is an
exceptionally strong candidate gene as it is involved in the
regulation of satiety and energy balance and is part of the
thermogenesis pathway [58]. A nonsynonymous SNP (K109R),
rs1137100, is strongly correlated with winter PC1 (p , 0.01).
Three SNPs in the PON1 gene, which codes for an esterase
present in high density lipoproteins (HDLs), have strong
patterns with summer PC1, and one of these, rs662, is a
nonsynonymous SNP (R192Q) that was shown to affect
enzymatic activity in vitro [59] (Figure 1C and 1D). Additional
nonsynonymous SNPs with strong climate signals are found
in the FABP2 and the EPHX2 genes, which code for the
intestinal fatty acid binding protein 2 and the cytoplasmic
epoxide hydrolase 2, respectively. The derived allele at SNP
(A54T), rs1799883, in FABP2 increases strongly with latitude
(p , 0.01) and SNP (R287Q), rs751141, in EPHX2 has a
significant correlation (p , 0.01) with winter PC1 with both

Table 1. Proportion of SNPs Significant with Climate Variables Using a Parametric (Bayesian Geographic Analysis) and a Nonparametric
(Spearman Rank Correlation) Method

Method Variable aa ¼
0.01 0.05 0.1 0.5

Bayesian geographic analysis Absolute latitude 0.0169 0.0714 0.1344 0.6090

Summer PC1 0.0545 0.1017 0.1598 0.5218

Summer PC2 0.0206 0.0557 0.1077 0.4843

Winter PC1 0.0303 0.1102 0.1622 0.6005

Winter PC2 0.0109 0.0351 0.0993 0.4891

Spearman rank correlationa Absolute latitude 0.0339 0.0787 0.1283 0.5545

Summer PC1 0.0206 0.0605 0.1308 0.4903

Summer PC2 0.0206 0.0702 0.1223 0.5811

Winter PC1 0.0303 0.0835 0.1646 0.5908

Winter PC2 0.0315 0.0460 0.0751 0.5387

aValues are bold if there is an excess in at least 95% of the bootstrap replicates when bootstrapping was performed across genes.
doi:10.1371/journal.pgen.0040032.t001
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methods. While these nonsynonymous SNPs are likely to have
functional effects and are plausible targets of selection, we
cannot rule out that selection acted on different SNPs in
strong linkage disequilibrium with the non-synonymous ones.
Many genes exhibit significant climate patterns at non-

coding SNPs that cannot be easily accounted for by linkage
disequilibrium with nonsynonymous SNPs. Among them, the
strongest signal is observed at the RAPTOR gene, which is
involved in nutrient signaling, mitochondrial oxygen con-
sumption and oxidative capacity [53]. Four SNPs had
significant patterns with winter PC1 with p , 0.01 for both
methods, and several additional SNPs showed significant
patterns (p , 0.01) with either latitude or winter PC1 (p ,

0.05) with both methods (Figure 1A and 1B). A resequencing
survey did not detect any common nonsynonymous variants
at this gene (Sun and Di Rienzo, unpublished observation).
The TCF7L2 gene, which shows the strongest signals in
genome-wide association studies of T2D [60–64], harbors
several SNPs with strong climate signals; as for RAPTOR, no
common nonsynonymous SNPs are known at this gene [65].
SNP rs7903146 in TCF7L2, which is most consistently
associated with T2D risk [66], is significant with summer
PC1 using the Bayesian geographic analysis method (p ¼
0.019) and was suggestive using the rank correlation method
(p ¼ 0.057). However, another TCF7L2 SNP, rs11196175,
showed stronger patterns with all methods. This result may
reflect the presence of multiple SNPs affecting TCF7L2
function or may simply result from stochastic variation in
the climate signal due to the partial correlation among alleles
within a gene. Among other SNPs reported to influence T2D
risk based on a large number of replication studies [67], the
PPARG (P12A) rs1801282 is significantly correlated with
latitude (p , 0.01 with rank correlation) while the KCNJ11
(E23K) rs5219 is not correlated with any variable.

The Signal of Spatially Varying Selection at Candidate
SNPs for Skin Pigmentation
To better understand the expectations for genetic varia-

tion subject to spatially varying selection, we analyzed SNP
allele frequencies in candidate genes for variation in skin
pigmentation.
First, we used publicly available data for 6 SNPs previously

genotyped in the HGDP panel [15] and subjected them to the
same tests that we used to assess evidence for spatially varying
selection in candidate genes for the phenotypes of the

Table 2. SNPs Significant with Empirical p , 0.05 with Both
Methods

Variable Genea SNP

Latitude FABP2 rs1799883

FGF2 rs308408

FGF2 rs308409

IPF1 rs17826863

LEPR rs1475397

MEF2A rs2570824

MEF2A rs2570932

PCSK1 rs6892752

RAPTOR rs12946049

RAPTOR rs12946115

RAPTOR rs12946618

RAPTOR rs12950541

RAPTOR rs2589153

RAPTOR rs719781

Summer PC1 ADRA2B rs7604842

CD36 rs3173798

DRD2 rs4245148

DRD2 rs4587762

DSCR1 rs2300386

MAPK1 rs17759796

MAPK14 rs12200998

PIK3CB rs9879784

PON1 rs3917542

PON1 rs662

PON1 rs854555

SCARB2 rs12508223

SOD1 rs2833479

SOD1 rs2833483

TCF7L2 rs11196175

Summer PC2 CETP rs4784744

CLOCK rs1979605

DSCR1 rs2256666

DSCR1 rs928760

EGFR rs11770506

LEPR rs1171275

LEPR rs1892535

LEPR rs7534511

LEPR rs9436301

LEPR rs970468

NPPA rs198414

PTK2B rs2241655

PTK2B rs7000364

PTK2B rs755951

PTK2B rs9657295

RAPTOR rs9903123

RAPTOR rs9906493

SOAT1 rs7548288

Winter PC1 ACE rs7214530

DRD2 rs4245151

EGFR rs11534100

EPHX2 rs751141

FGF2 rs13118685

FGF2 rs308428

LEPR rs10157275

LEPR rs1022981

LEPR rs11208654

LEPR rs1137100

LEPR rs1171275

LEPR rs12079231

LEPR rs12405556

LEPR rs1475397

LEPR rs1892535

LEPR rs4655518

MAPK1 rs1892848

MEF2A rs2570932

NUDT6 rs2136424

PCSK1 rs2936428

PCSK1 rs6892752

PPARGC1A rs4550905

Table 2. Continued.

Variable Genea SNP

PTK2B rs1879184

RAPTOR rs12946049

RAPTOR rs12946115

RAPTOR rs12946618

RAPTOR rs7225574

UCP3 rs7930460

Winter PC2 EGFR rs13222385

LPA rs7453836

MMRN1 rs7656954

TCF1 rs11065386

aSNPs significant with p , 0.01 with both methods are bold.
doi:10.1371/journal.pgen.0040032.t002
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metabolic syndrome. These SNPs include the nonsynonymous
SNPs in SLC24A5 and SLC45A2, which were associated with
normal variation in skin pigmentation [13,68], as well as a
nonsynonymous SNP in TYR (rs1042602), which was recently
associated with normal variation in hair color and with
freckles [69]. The remaining variants are a nonsynonymous
SNP in OCA2 (rs1800404), a SNP in the promoter of ASIP, and
an intronic SNP (rs1800410) in OCA2. These SNPs were
reported to carry a signature of positive natural selection
based on either haplotype structure or inter-population
differentiation [13–18]. As shown in Table 3, several of these
candidate SNPs showed interesting patterns with climate
variables. We expected that short wave radiation flux should
have the strongest signal with SNPs in skin pigmentation
genes since intensity of solar radiation is likely to be the best
proxy for the selective pressure acting on this phenotype [12].
Somewhat surprisingly, however, we did not see the strongest
signals with short wave radiation flux. Instead, we found very
strong patterns with latitude and with winter PC1. Since
climate and, as a result, UV exposure at the earth surface
changed over evolutionary time while latitude did not, it is
possible that latitude provides a better proxy for the long-
term selective pressures that shaped variation in these genes.
It is also possible that the power to detect a correlation varies
for different climate variables. For example, if the spatial
distribution of some climate variables is similar to genome-
wide patterns of population structure, neutral allele frequen-

cies may be more strongly correlated with these climate
variables, possibly leading to a greater reduction in power for
some variables compared to others. Indeed, we found that the
correlation between control SNP allele frequencies and
climate PCs differs across variables (see Figure S1). We also
found some difference between the results using the rank
correlation and the Bayesian analyses. In agreement with our
findings for metabolic genes, the latter tends to yield more
significant signals than the nonparametric method.
Finally, we wanted to investigate how the signal of spatially

varying selection is distributed across tag SNPs within the
same gene. For this analysis, we selected the gene SLC24A5
because of its known function in human skin pigmentation:
its knockdown has a skin pigmentation phenotype in zebra-
fish and this phenotype can be rescued by the human
SLC24A5 [13]. In addition, the nonsynonymous polymor-
phism at amino acid 111 (rs1426654) was found to be
associated with variation in pigmentation among African-
American and African-Caribbean individuals [13]. We chose
tagging SNPs for SLC24A5 in the same way as for the
metabolic syndrome candidate genes and tested them for a
correlation with climate variables. The empirical p-values for
both methods are shown in Table 4. With both methods, we
found strong signals for the ‘‘causative’’ nonsynonymous SNP
as well as for a few additional SNPs. In the case of the rank
correlation analysis, some of the significant SNPs had
stronger correlations with latitude, summer PC1 and summer

Figure 1. Allele Frequencies for rs12946049 in the RAPTOR Gene Are Mapped onto Winter Maximum Temperature (A) and Plotted against Winter PC1 (B)

Allele frequencies for rs662 in the PON1 gene are mapped onto summer SWRF (C) and plotted against summer PC1 (D).
doi:10.1371/journal.pgen.0040032.g001
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short-wave radiation flux than the causative SNP. Similarly,
with the Bayesian geographic analysis, several SNPs show a
signal that is as strong as that carried by the causative SNP.
These results suggest that, while there is strong signal at the
SLC24A5 gene (with as high as 60% SNPs with p , 0.05), there
is not sufficient resolution in the SNP-based signal to
distinguish the causative SNP from other correlated SNPs.

Discussion

Our goal was to test the hypothesis that climate, and in
particular cold and heat stress, exerted strong selective
pressures on the biological processes underlying common
metabolic disorders in humans. To select a group of genes
likely to have experienced similar selective pressures, we
exploited the knowledge-base gleaned from studies of the
metabolic syndrome and its phenotypes coupled with a
bioinformatics approach based on network theory. Common
variation in these genes was systematically captured by
genotyping tag SNPs in a worldwide population panel and
the data were analyzed to characterize the spatial patterns of
variation. Based on the assumption that selection varies
according to measurable aspects of climate, we show that the
spatial distribution of allele frequencies in genes involved in
metabolic processes is significantly different from that of
unconstrained SNPs. Although we cannot exclude the
possibility that other environmental variables correlated with
climate drove part of the signals of spatially varying selection,
our results argue for a role of climate adaptations in the
biological processes underlying the metabolic syndrome and
its phenotypes.

The finding that variation in candidate genes for common
metabolic disorders was selected because it increased
tolerance to climatic extremes is supported by the link
between a number of non-disease metabolic traits and the
phenotypes of the metabolic syndrome. For example,
variation in energy balance is likely to be related to obesity
risk, through variation in food intake, body mass index, and
basal metabolic rate. Basal metabolic rate has been shown to
vary among species [70] as well as among human populations
[26,27,71] as a function of environmental temperature, and
this variation is thought to be related to the need for

increased heat production to maintain homeostasis in colder
climates [27]. Blood glucose levels are increased in individuals
with T2D, which might increase survival in cold temperatures
[72]. Elevated levels of sugar and sugar derivatives in the
blood have been found in some cold-adapted species [1].
Changes in blood serum triglycerides and HDL cholesterol
[73,74] with acclimation to cold environments have been
documented in humans. Optimal sodium retention may
differ among climates and variation in sodium retention is
likely to affect hypertension risk. In hot, humid environ-
ments, high sodium retention may be necessary, whereas high
sodium retention may be deleterious in cooler environments
[20]. Therefore, because of the partial overlap between
common metabolic disorders and cold-adaptive phenotypes,
the subset of SNPs with strong signals of spatially varying
selection detected in this study can be considered strong
candidates for the genetic susceptibility to the metabolic
syndrome.
Consistent with the idea of a link between the genetic

susceptibility to metabolic disorders and adaptations to
climate, many of the SNPs with strong signals in our analysis
were also associated with metabolic phenotypes. As a general
observation, this may not be surprising: genes were included
in the analysis because of prior evidence of association with
metabolic disorders. However, the specific patterns observed
at SNPs in which signals of spatially varying selection
coincided with evidence of association with specific pheno-
types were not dictated by our study design. For example,
several of the SNPs showing strong patterns with winter PC1,
which summarizes mainly winter temperatures and latitude,
are also known to play a role specifically in cold tolerance.
Perhaps the best case is the nonsynonymous 109R allele in
LEPR; this allele increases in frequency with decreasing
winter temperatures and is associated with increased respi-
ratory quotient (CO2 released:O2) [75], consistent with a role
in non-shivering thermogenesis [75,76]. This derived allele
was also reported to be associated with lower BMI, lower
abdominal sagittal diameter, and lower systolic and diastolic
blood pressure [75,76]. In addition, Wauters et al. [77] found
an association for the LEPR 109R allele with fasting insulin
levels and insulin response in women with impaired glucose
tolerance, suggesting a role in the pathogenesis of T2D.

Table 3. Coefficients and p-Values (in Parentheses) for Pigmentation Candidate SNPs.

Method Gene SNP Latitude Summer PC1 Summer PC2 Winter PC1 Winter PC2 Summer SWRF Winter SWRF

Bayesian geographic analysisa ASIP rs6058017 0.52 (0.88) 0.31 (0.72) 0.58 (0.8) 0.18 (0.43) 0 (0.02) 0.35 (0.81) 0.94 (0.12)

OCA2 rs1800404 0 (0) 0 (0) 0.95 (0.1) 0 (0) 0.73 (0.68) 0.08 (0.19) 1 (0)

OCA2 rs1800410 0.12 (0.07) 0.97 (0.93) 0.03 (0.03) 0.01 (0) 0.15 (0.19) 0.23 (0.3) 0.06 (0.09)

SLC24A5 rs1426654 0 (0) 0 (0) 0.8 (0.4) 0 (0) 0.96 (0.1) 0 (0) 0.91 (0.18)

SLC45A2 rs16891982 0 (0) 0.46 (0.94) 1 (0) 0 (0) 0 (0.01) 1 (0) 1 (0)

TYR rs1042602 0.08 (0.25) 0.11 (0.25) 0.37 (0.85) 0.18 (0.42) 0.36 (0.65) 0.07 (0.17) 0.84 (0.41)

Spearman rank correlationa ASIP rs6058017 0.23 (0.58) �0.02 (0.9) �0.18 (0.54) 0.2 (0.62) 0.45 (0) �0.01 (0.92) �0.41 (0.13)

OCA2 rs1800404 0.7 (0) 0.49 (0.08) �0.3 (0.19) 0.61 (0) 0.07 (0.64) 0.41 (0.13) �0.64 (0)

OCA2 rs1800410 0.03 (0.92) �0.33 (0.16) �0.42 (0.09) 0.25 (0.41) 0.04 (0.75) �0.37 (0.1) �0.09 (1)

SLC24A5 rs1426654 0.59 (0.01) 0.7 (0) �0.02 (1) 0.4 (0.16) 0.05 (0.74) 0.61 (0.04) �0.44 (0.11)

SLC45A2 rs16891982 0.59 (0.01) 0.65 (0.04) �0.06 (0.9) 0.42 (0.14) 0.21 (0.22) 0.55 (0.05) �0.52 (0.02)

TYR rs1042602 0.53 (0.01) 0.64 (0.04) 0.05 (0.79) 0.34 (0.24) 0.15 (0.4) 0.59 (0.04) �0.44 (0.1)

aBayesian geographic analysis coefficients range from zero to one, whereas Spearman coefficients range from negative one to one. For both statistics, empirical p-values are two-tailed.
Bolded values represent significance with p � 0.01.
doi:10.1371/journal.pgen.0040032.t003
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Interestingly, a genome scan for selection signals based on the
HapMap data showed that there is extended haplotype
homozygosity around the LEPR gene, as summarized by the
integrated Haplotype Score (iHS) [17]. More specifically,
several SNPs in LEPR that had significant patterns with
winter PC1 also had significant iHS values (i.e. rs1892535,
rs1137100, rs1022981, and rs12405556 in Asians and
rs4655518 in both Asians and CEPH Europeans). This is
consistent with the idea that variants that are deleterious in
hot equatorial climates become advantageous (rather than
simply neutral) in colder climates.

A similarly interesting example is the signal observed at the
PON1 gene, whose protein product protects lipids from
oxidation [78] and is involved in vasodilation. A derived
nonsynonymous allele (192Q), which increases in frequency
with latitude and affects enzymatic activity in vitro [59], was
found to influence LDL size [79] and to be protective against
coronary artery disease [80], stroke [81] and myocardial
infarction risk [82]. Additional signals of spatially varying
selection for nonsynonymous SNPs are found at the FABP2
gene and the EPHX2 gene. The FABP2 protein participates in
the uptake, intracellular metabolism and transport of long-
chain fatty acids. The derived allele at SNP rs1799883, which
increases strongly with latitude, was found to increase affinity
for long-chain fatty acids [83], consistent with a role in
protection against cold temperatures by increasing BMI and
increasing the fuel for heat production. In addition, it was
associated with an increase in insulin resistance [83],
increased plasma concentrations of cholesterol and trigly-
cerides [84], and total abdominal and subcutaneous abdomi-
nal fat [85]. SNP (R287Q) rs751141 in EPHX2 has a significant
correlation with winter PC1 and was previously shown to
modify risk of familial hypercholesterolemia. Among carriers
of causative mutations for familial hypercholesterolemia,

carriers of the EPHX2 287Q variant had higher plasma
cholesterol and triglyceride levels [86]. In addition, the 287Q
variant was associated with a two-fold increased risk of
coronary artery calcification in African Americans, but no
relationship was found in Caucasians [87].
Interestingly, for all four nonsynonymous SNPs discussed

above, the derived allele increases in frequency outside
Africa. However, two of these derived alleles (LEPR 109R
and PON1 192Q) decrease risk to disease phenotypes (obesity
and CAD), while the other two (FABP2 54T and EPHX2 287Q)
increase risk for disease traits (obesity and coronary artery
calcification). Moreover, the frequencies of two additional
derived alleles that protect against T2D (i.e. rs7903146 in
TCF7L2 and P12A (rs1805192) in PPARG) and show signifi-
cant climate signals also increase outside Africa. Therefore,
these derived alleles have opposing effects on disease
susceptibility, even though they are all likely to be involved
in adaptations to cold climates. This observation contrasts
with the results of a survey of variants influencing risk to
hypertension; in all cases, the frequencies of the protective
alleles were found to increase outside Africa, but some of
these alleles were ancestral rather than derived [22]. A
possible explanation is that the impact of climate adaptations
on the susceptibility to common diseases varies depending on
the biological process underlying the specific disease trait.
For example, it is reasonable to expect that adaptations to
heat and cold stress involve a different set of genes and
biological processes, e.g. sodium homeostasis and energy
metabolism, respectively. Therefore, the evidence for climate
adaptations in candidate genes for metabolic disorders does
not lead to the expectation that these conditions will
systematically occur at higher frequency in one ethnic group
compared to another. On the other hand, one might
speculate that climate adaptations involving different bio-

Table 4. Coefficients and p-Values (in Parentheses) for Tag SNPs in SLC24A5

Method SNP Latitude Summer PC1 Summer PC2 Winter PC1 Winter PC2 Summer SWRF Winter SWRF

Bayesian geographic analysisa rs1834640 0.92 (0.22) 1 (0) 0.43 (0.92) 0.84 (0.38) 0.33 (0.64) 1 (0) 0.44 (0.91)

rs2675345 1 (0) 1 (0) 0.06 (0.12) 1 (0) 0.06 (0.15) 1 (0) 0.01 (0.03)

rs2459391 0.91 (0.22) 0.81 (0.31) 0.06 (0.12) 0.89 (0.3) 0.33 (0.64) 0.76 (0.39) 0.46 (0.95)

rs2433356 0.91 (0.22) 0.94 (0.13) 0.16 (0.4) 0.9 (0.24) 0.33 (0.64) 0.93 (0.12) 0.41 (0.86)

rs16960620 0.36 (0.85) 0.85 (0.21) 0.73 (0.51) 0.37 (0.78) 0.49 (0.94) 0.77 (0.38) 0.53 (0.91)

rs8040016 0.11 (0.29) 0.02 (0.03) 0.84 (0.33) 0.12 (0.24) 0.51 (0.96) 0.02 (0.09) 0.6 (0.82)

rs16960624 0.28 (0.68) 0.41 (0.88) 0.22 (0.59) 0.49 (0.99) 0.96 (0.11) 0.3 (0.73) 0.25 (0.55)

rs1426654b 0 (0) 0 (0) 0.8 (0.4) 0 (0) 0.96 (0.1) 0 (0) 0.91 (0.18)

rs8028919 0.98 (0.06) 1 (0) 0.15 (0.38) 0.97 (0.1) 0.36 (0.64) 1 (0) 0.23 (0.53)

rs2413887 1 (0) 1 (0) 0.17 (0.4) 1 (0) 0.03 (0.12) 1 (0) 0.04 (0.1)

Spearman rank correlationa rs1834640 �0.55 (0.02) �0.69 (0) �0.14 (0.55) �0.12 (0.5) �0.12 (0.51) �0.57 (0.01) 0.52 (0.13)

rs2675345 �0.74 (0) �0.66 (0) �0.05 (0.76) �0.26 (0.2) �0.01 (0.95) �0.64 (0) 0.65 (0)

rs2459391 �0.63 (0) �0.45 (0.03) �0.05 (0.76) �0.32 (0.12) �0.02 (0.96) �0.48 (0.02) 0.53 (0.12)

rs2433356 �0.62 (0) �0.44 (0.05) �0.04 (0.81) �0.31 (0.13) �0.02 (0.96) �0.48 (0.02) 0.54 (0.11)

rs16960620 0.15 (0.89) �0.34 (0.11) �0.28 (0.12) 0.2 (0.41) �0.12 (0.52) �0.25 (0.21) �0.17 (0.85)

rs8040016 0.34 (0.34) 0.45 (0.15) 0.24 (0.24) 0.07 (0.87) 0.1 (0.42) 0.49 (0.06) �0.18 (0.84)

rs16960624 �0.43 (0.13) �0.19 (0.43) 0.11 (0.67) �0.25 (0.21) �0.08 (0.69) �0.25 (0.21) 0.53 (0.12)

rs1426654b 0.54 (0.01) 0.67 (0) 0.04 (1) 0.38 (0.16) �0.03 (0.74) 0.61 (0.04) �0.4 (0.11)

rs8028919 �0.65 (0) �0.68 (0) �0.1 (0.67) �0.17 (0.39) �0.05 (0.9) �0.63 (0) 0.58 (0.09)

rs2413887 �0.65 (0) �0.71 (0) �0.14 (0.52) �0.22 (0.25) �0.08 (0.74) �0.65 (0) 0.52 (0.12)

aBayesian geographic analysis coefficients range from zero to one, whereas Spearman rank correlation coefficients range from negative one to one. For both statistics, empirical p-values
are two-tailed. Bolded values represent significance with p � 0.01.
bPutative causative variant.
doi:10.1371/journal.pgen.0040032.t004
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logical processes account in part for the distribution of
metabolic profiles and disease-related traits across ethnic
groups [88].

The idea that alleles that confer adaptations to climate
have opposing effects on disease susceptibility is not entirely
unexpected; this is probably because positive selection acted
on phenotypes that are related, but distinct from the
metabolic disorders that reach high prevalence among
contemporary populations or that account only for a portion
of all patients. For example, a haplotype in the TCF7L2 gene
was reported to carry a signature of positive selection and
this haplotype includes the derived allele at SNP rs7903146
that protects against T2D [66]. Interestingly, this haplotype is
associated with higher body mass index and altered concen-
trations of the hunger-satiety hormones ghrelin and leptin,
suggesting that it conferred a selective advantage on energy
metabolism. Our finding that SNP rs7903146 has a significant
signal of spatially varying selection and that the derived allele
increases in frequency outside Africa is consistent with this
proposal. Furthermore, it illustrates how an adaptation to
climate may partially, but not entirely overlap with the
disease phenotype.

A key feature of our approach was the use of a network
algorithm to choose a set of candidate genes likely to have
experienced similar selective pressures, hence leading to the
expectation that these genes, as a group, would show a signal of
spatially varying selection. A network approach seemed
particularly appropriate because of the widely accepted idea
that the clustering of quantitative phenotypes typical of the
metabolic syndrome is due to a small set of shared metabolic
defects. By choosing seed genes implicated in all or most of
the phenotypes that characterize the metabolic syndrome, we
aimed to extract information regarding the core portion of
the metabolic syndrome subnetwork; the genes in this core
subnetwork are likely to be responsible for the concomitant
increase in prevalence of metabolic syndrome phenotypes
and to have been targets of natural selection in ancestral
populations. The observed excess of signals of spatially
varying selection in this group of genes suggests that our
strategy for identifying candidate genes with similar evolu-
tionary histories was successful. Interestingly, we found a
similar proportion of seed and non-seed genes with signals of
spatially varying selection, consistent with the idea that
network theory provides a useful framework for elucidating
the impact of natural selection.

From the population genetics standpoint, our results
suggest that searching for a correlation between allele
frequencies and specified environmental variables comple-
ments other approaches to detecting the signature of
selection that also compare allele frequencies across pop-
ulations. For example, there is a long history of using FST
values for detecting adaptations to local environments [89–
91] and this approach has been recently applied to genome-
wide variation data [92,93]. Even though spatially varying
selection may lead to high FST values, a strong and significant
correlation between allele frequencies and environmental
variables can be detected even if allele frequencies at
opposite extremes of the environmental range are not highly
differentiated. This is what we observed, for example, in the
RAPTOR gene, which carries the strongest signal with
latitude. Six SNPs are significant with empirical p , 0.05;
however, when compared to the HapMap data, the FST values

for these same SNPs are unremarkable, with 12% to 86% of
HapMap SNPs showing more extreme values.
The power and accuracy of our approach is likely to

depend on a number of factors, including the strength of
selection relative to gene flow. If selection is not sufficiently
strong to spread favored alleles between subdivided popula-
tions, allele frequencies may not show the expected clines
with the appropriate environmental variable. This may be the
case for some of the signals observed in this study. For
example, the allele frequencies at candidate SNPs for skin
pigmentation are not most strongly correlated with the
variable, i.e. short-wave radiation, that most closely matches
the selective pressure acting on these variants. Indeed, several
of these variants reach high frequency only in Eurasian
populations living west of the Himalayas, while East Asian
populations at similar latitudes have allele frequencies as low
as those found in Sub-Saharan Africa [15]. Although further
work is necessary to estimate the power of our approach for a
range of selective coefficients and migration rates, our
empirical investigation based on the skin pigmentation SNPs
suggests that strong signals can be detected even if the spatial
distribution of allele frequencies does not match exactly the
spatial distribution of the intensity of selection. Additional
factors that may affect the power and accuracy of our
approach include threshold effects on fitness, so that a
correlation between an allele frequency and an environ-
mental variable is expected only over a portion of the range
of environmental variation. Furthermore, as noted for skin
pigmentation variants [15], parallel mutations that arose in
different populations may obscure the expected correlation
with the relevant environmental variable.
Although we tested for a correlation between allele

frequencies and climate variables, it is unclear whether all
the signals of spatially varying selection reported here are the
result of adaptations to climate rather than other environ-
mental variables. To the extent that other features of the
environment are partially correlated with climate, our
method is unlikely to distinguish between selective pressures.
For example, UV radiation, which was included among the
climate variables in our analysis, is correlated with the other
climate variables and with latitude (data not shown). Clearly,
UV radiation influences environmental temperature and,
therefore, it is expected to exert a selective pressure on genes
involved in diverse biological processes, from energy metab-
olism to melanin production. In some cases, climate may be
an important determinant of other aspects of the environ-
ment. An important example is the diversity of parasitic and
infectious disease species, which is known to decrease with
latitude mainly as a result of climatic factors [94]. Likewise,
resource availability, which in turn may influence subsistence
and diet, is likely to be partially correlated with climate (see,
for example [95,96]). Therefore, the signals of spatially
varying selection, detected in this study are likely to be the
result of both the direct and indirect influence of climate on
human genetic variation; they may also be due to selective
pressures entirely unrelated to climate, but partially corre-
lated with it. Despite these caveats, our results indicate that
searching for spatial patterns of allele frequencies that
correlate with environmental variables will add to our
knowledge concerning the history of selective pressures
acting on the human genome.
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Materials and Methods

Population samples. We genotyped 971 individuals from 52
worldwide populations from the CEPH Human Genome Diversity
Project (HGDP) panel [33] and 10 duplicate controls. From the
original panel of 1064 samples, 93 were excluded from analysis
because they had been inferred to be either from members of first-
degree relative pairs, duplicates or atypical [97]. In all analyses, we
combined all individuals from South African Bantu populations into
one group, which we considered to be different from the Bantu
sample from Kenya. In addition, we genotyped 72 individuals from
two Cameroonian populations. We included 38 individuals from the
Ewondo Beti, who belong to the Bantu language group, and 34
individuals from the Chadic-speaking Hausa; all Cameroonian
individuals were sampled in Yaounde. This study was approved by
the University of Chicago Institutional Review Board.

Candidate gene selection using network analysis. Primary evidence
scores used for running the molecular triangulation program were
assigned based on the types of evidence found in the literature
review. For each type of evidence, points were added to the primary
evidence score in the following manner: ten points were added if
there was significant evidence of association from a meta-analysis,
one point was added if there was significant evidence of association in
a single analysis, four points were added if a Mendelian phenotype
results from mutations in a given gene, four points were added if the
gene product is a drug target, one point was added if the gene was
found to affect a given phenotype in an animal model, one point was
added if there was physiological evidence a gene was involved in a
phenotype and for genes with at least one of the previous types of
evidence, we gave one point for genes that fell under a linkage peak.
In order to be included as a ‘‘seed’’ gene in the network analysis, a
gene needed to have a primary evidence score �3, except in the case
of metabolic syndrome, where we only required a score �1. The score
required was lower for metabolic syndrome because this phenotype is
likely to represent a defect in the core metabolic pathway and
because few studies have examined metabolic syndrome directly. We
chose genes using the molecular triangulation method in two ways: (1)
by running the algorithm on each phenotype separately and then
combining the p-values and (2) by running the algorithm on genes
with strength of evidence scores reflecting evidence for all pheno-
types together. For the separate phenotype analysis, we first ran the
molecular triangulation algorithm on each phenotype separately and
summed the p-values associated with the secondary evidence scores
across all phenotypes. Then, we chose 50 ‘‘seed’’ and 50 ‘‘non-seed’’
genes with the lowest sums of the p-values. For the combined
phenotype analysis, we summed the strength of evidence scores for all
phenotypes, ran the molecular triangulation algorithm, and chose the
most significant 20 ‘‘seed’’ and 20 ‘‘non-seed’’ genes. This list of genes
was reduced by choosing the 39 seed and 35 non-seed genes that had
the best coverage of tag SNPs in the HapMap (a total of 34 out 140
genes were omitted due to poor tagging in the HapMap). We also
selected an additional 8 genes with strong evidence of involvement in
MetS phenotypes that were not present in the network. These genes
are described in greater detail in the Results section. In total, we
included 82 genes in the analysis.

Selection of SNPs in candidate genes. Genic SNPs were selected
from among HapMap Phase II (Build 35) SNPs located in a region
that spans from 100 kb upstream to 100 kb downstream of each of the
82 genes. The frequency of the global minor allele (GMA) for each
SNP was estimated based on the allele counts of the combined sample
of 180 unrelated HapMap individuals (60 CEU parents, 60 YRI
parents, 30 JPT þ 30 CHB chosen at random from the 90 Asian
samples). Given these allele frequencies, the SNPs selected for
genotyping were further filtered using the following steps. First,
SNPs with GMA frequency less than 10% or greater than 90% in all
three regional populations were omitted. Second, SNPs from step 1
were sorted into tag bins using ldSelect (v 1.0) [98], applying an r2

threshold of 0.8. The process of sorting into tag bins was done both
for the global sample and the non-African (CEU þ ASN) sample.
Third, tag SNPs were selected from each bin observed in the global
sample; in addition, tag SNPs were selected from bins that were found
only in the non-African sample. If a tag bin had multiple tag SNPs,
the SNP with the highest Illumina assay score was chosen. SNPs were
also preferentially included if they were nonsynonymous or if they
had been previously associated with disease phenotypes. For all genes,
tag SNPs were chosen from among those bins whose span (the
smallest region containing all SNPs in the bin) intersected the region
between 5 kb upstream and 5 kb downstream of the gene.

Selection of control SNPs. To control for the effect of population
structure in assessing the relationship between climate variables and

allele frequencies at candidate genes, we genotyped a set of control
SNPs from unconstrained genomic regions. These regions were
chosen from among noncoding regions that are neither conserved
nor in strong LD with deeply conserved sequence elements. To select
unconserved regions, sequence conservation was calculated over
sliding windows (100 bp window size, 1 bp step size) in the human-
chicken, human-zebrafish, human-mouse and human-rat genome
alignments, which were obtained from the UCSC Genome Browser
(http://genome.ucsc.edu), and a region was considered conserved if
sequence identity exceeded 70%. Then, using estimates of the
population recombination rate parameter q (¼4Nr, where N is the
effective population size and r is the cross-over rate between adjacent
sites) [99], regions were selected to be at least 200 kb in length and at
least 40 q units away from regions conserved between human and
chicken or between human and zebrafish, to be unconserved between
human and mouse or between human and rat, and not to contain
coding regions. Among these regions, we selected a subset so that
their lengths matched the distribution of lengths for genic regions.
SNPs from these regions were chosen using a procedure similar to the
procedure used in the selection of genic SNPs. Briefly, tag SNPs were
chosen so that their allele frequency distribution matched that of
SNPs in genic regions. One SNP was selected at random from the set
of tag SNPs each control region.

SNP genotyping. 1130 SNPs were genotyped using the Illumina
BeadArray technology at the UCLA Southern California Genotyping
Consortium Facility. Thirty-nine SNPs had 100% missing data. In
addition, data were filtered so that three SNPs with missing data for
more than 5% of the genotypes, three SNPs with high population-
specific missing data, and two monomorphic SNPs were excluded
from analyses. Seven HGDP individuals, one Hausa and one Beti
individuals with more than 10% missing data were excluded from
analyses. Data quality was assessed by genotyping 10 duplicate
samples; we found only one genotyped pair with a discrepant call,
for an error rate of 9.25 3 10�5.

Tag SNPs in the SLC24A5 gene were genotyped using TaqMan
Assays on Demand, for which 2ll of 40ng/lL DNA was added to 3.5 lL
TaqMan SNP Genotyping MasterMix, 0.125 Assay on Demand
solution and 2.5 lL ddH2O. Fluorescence was visualized on an
Applied Biosystems 7900 HT Fast Real Time PCR machine. Data
quality was assessed by genotyping 7 duplicate samples; we did not
find any discrepant call in these duplicates.

For all analyses, ancestral state was inferred based on the human-
chimpanzee genome alignment. When the ancestral state could not
be unambiguously inferred, the major allele in the combined African
HGDP populations was assumed to be ancestral.

Climate variables. Climate data were obtained for each population
based on coordinates provided with the HGDP panel. For the
Cameroonian samples, coordinates for the birthplaces of each
individual’s grandparents were obtained from Mapquest (http://
www.mapquest.com). We selected climate variables separately for
the summer and winter seasons from the NCEP/NCAR database [100];
they included: precipitation rate, relative humidity, minimum
temperature, maximum temperature, mean temperature and short
wave radiation flux. Values for summer and winter seasons were
obtained for each variable by averaging variables over these seasons.
We ran principal components analysis separately for summer and
winter on a matrix that included the six climate variables as well as
latitude and longitude using the prcomps() function in R [101].
Latitude and longitude were included because they might capture the
long-term climate of human populations better than the climate
variables measured over the past 50 years. Principal components
analysis results in new variables, which are linear combinations of the
original data weighted by the eigenvectors. Eigenvectors for these PCs
and the proportion of the variance explained by each PC are shown
in Tables S7 and S8.

Detecting SNPs with climate patterns. We used two different
methods to determine whether SNP allele frequencies at the
candidate genes had been shaped by selective pressures related to
climate. In the first method, a Spearman rank correlation coefficient
is calculated for each SNP and each climate variable or PC. The data
from the control SNPs are used to provide an empirical null
distribution of rank correlation coefficients that reflects the history
of human migrations and population structure. Specifically, for the
rank correlation coefficient value of each genic SNP we found the
percentile value in the control SNP distribution; this percentile value
is referred to as the empirical p value for a given genic SNP and a
given climate variable or PC. The Spearman rank correlation method
does not assume that the relationship between SNP allele frequency
and climate variable or PC is linear.

The second method, which we refer to as Bayesian geographic
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analysis, is designed to test for a correlation between an environ-
mental variable and the frequency of an allele across populations,
while accounting for differences in sample size and the neutral
covariation of allele frequencies among populations. This approach
involves two stages. First, we use a set of SNPs (which can be treated as
randomly chosen for our purposes and which were typed by Conrad
et al., 2006 [102]) to estimate the covariance matrix (X) whose entries
give the covariance of allele frequencies between pairs of popula-
tions. To estimate this matrix we make a number of assumptions. The
allele counts at a SNP in a population are assumed to be a binomial
draw from the unknown underlying population allele frequency. We
assume the population allele frequency within a population margin-
ally has a normal distribution where the mass of the normal
distribution below zero is placed as a point mass on zero and the
mass above one is placed on one. The population frequency across
populations is assumed to have a multivariate normal distribution,
with an unknown covariance matrix X and mean l. Given these
assumptions we used Markov Chain Monte Carlo (MCMC) to sample
the posterior distribution of the covariance matrix (using standard
priors). Second, for each genic SNP and each climate variable, we
tested for correlation with the climate variable (whose values across
the 52 populations is a vector Y), while controlling for population
structure using the covariance matrix estimated in the first step. To
perform this test we included a linear effect bY (where b is the
coefficient) in the mean of the multivariate normal, and estimated the
posterior of b using MCMC. To summarize the posterior in a single
test score we recorded the proportion of the posterior density, which
was above zero. If the data has no strong signal of an effect of the
environmental variable (Y) the posterior of b will be reasonably
symmetrically distributed around zero resulting in scores close to 0.5,
a posterior strongly skewed towards positive b will have a score close
to one, while a posterior distribution strong skewed towards negative
b will give a score close to zero. We also ran a test for each
environmental variable on each control SNP and use these scores to
estimate, for each environmental variable, an empirical two-tailed p-
value for each genic SNP.

We included the two Cameroonian populations (Hausa and Beti)
when we ran the Spearman method, but we excluded these
populations when we ran the Bayesian geographic analysis method
since the covariance matrix was created from a dataset that did not
include these populations.

Testing for excess significance for climate variables. Since we
performed many tests and the SNPs within a given gene are not
independent, we asked whether the genic SNPs as a group show a
larger proportion of low p values than expected by chance. To this
end, we chose several type I error levels (a ¼ 0.01, 0.05, 0.1 and 0.5)
and, for each variable, we calculated the proportion of genic SNPs
with empirical p-values less than a. Furthermore, because the SNPs
within any given genic region are not completely independent while
the control SNPs are, it is possible that the observed excess of genic
SNPs with p , a is driven by a large number of correlated SNPs
within one or few genes rather than by SNPs in many genes. To
distinguish between these two possibilities, we bootstrap re-sampled
across genic and control SNPs and recalculated, for each of 1000
bootstrap replicates, the proportion of SNPs with p-values lower than
each cutoff. This distribution of proportions was then used to get a
measure of the confidence that the excess we observed was robust to
the choice of genes and control SNPs. More specifically, for each
replicate, we drew a set of 81 genes with replacement from the
original set of genes and a set of 210 controls with replacement from
the list of control SNPs. Then, we calculated empirical p-values for
each of the genic SNPs using the distribution of control SNPs. Next,
we determined the proportion of genic SNPs that had p-values less
than or equal to each a cutoff. Finally, we found the proportion of
bootstrap replicates where the proportion of SNPs with p-values less
than or equal to the cutoff was greater than expected by chance.

Supporting Information

Figure S1. Correlation between Climate Variables and Control SNPs

(A) shows the frequency distribution of the Spearman rank
correlation test statistic (q) for the control SNPs for each of the
climate variables. The critical values for a¼ 0.01 from the theoretical
distribution are shown by vertical lines. Panel B shows the
distribution of Spearman rank correlation p-values from the
theoretical distribution. The horizontal line shows the expectation
if there was no effect due to population structure (i.e., if the p-values
were uniformly distributed).

Found at doi:10.1371/journal.pgen.0040032.sg001 (2.0 MB TIF).

Table S1. Literature Review Results for Hypertension

Found at doi:10.1371/journal.pgen.0040032.st001 (636 KB DOC).

Table S2. Literature Review Results for Type 2 Diabetes

Found at doi:10.1371/journal.pgen.0040032.st002 (513 KB DOC).

Table S3. Literature Review Results for Obesity

Found at doi:10.1371/journal.pgen.0040032.st003 (1.0 MB DOC).

Table S4. Literature Review Results for Dyslipidemia

Found at doi:10.1371/journal.pgen.0040032.st004 (374 KB DOC).

Table S5. Literature Review Results for Metabolic Syndrome

Found at doi:10.1371/journal.pgen.0040032.st005 (113 KB DOC).

Table S6. Selection of Candidate Genes for Genotyping

Found at doi:10.1371/journal.pgen.0040032.st006 (93 KB DOC).

Table S7. Eigenvectors from Principal Components Analysis

Found at doi:10.1371/journal.pgen.0040032.st007 (35 KB DOC).

Table S8. Proportion of Variance Explained by Each Principal
Component

Found at doi:10.1371/journal.pgen.0040032.st008 (30 KB DOC).

Table S9. Proportion of SNPs Significant with RAPTOR Included in
the Analysis

Found at doi:10.1371/journal.pgen.0040032.st009 (37 KB DOC).
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