
R
IG

ET
TI

 C
O

M
P

U
TI

N
G

CLIMATE Insurance industry
should collect a levy
for adaptation p.152

ENGINEERING The recluse
who revolutionized
communications p.156

MUSIC An AI and language-
evolution researcher on his
new Faust opera p.157

TECHNOLOGY Developing the
Chinese typewriter was no
easy task p.158

An 8-qubit quantum processor built by Rigetti Computing.

The world is about to have its first
quantum computers. The complexity
and power of quantum hardware, such

as ion traps and superconducting qubits, are
scaling up. Investment is flooding in: from
governments, through the billion-dollar
European Quantum Technology Flagship
Program, for example; from companies,
including Google, IBM, Intel and Microsoft;
and from venture-capital firms, which have

funded start-ups. One such is ours, Rigetti
Computing, which in June opened the first
dedicated facility for making quantum inte-
grated circuits: Fab-1 in Fremont, California.
The vision is that commercial quantum-
computing services will one day solve prob-
lems that used to be unimaginably hard, in
areas from molecular design and machine
learning to cybersecurity and logistics.1

The problem is how best to program

these devices. The stakes are high — get this
wrong and we will have experiments that
nobody can use instead of technology that
can change the world.

We outline three developments that are
needed over the next five years to ensure
that the first quantum computers can be
programmed to perform useful tasks. First,
developers must think in terms of ‘hybrid’
approaches that combine classical and

First quantum computers
need smart software

Early devices must solve real-world problems, urge Will Zeng and colleagues.

1 4 S E P T E M B E R 2 0 1 7 | V O L 5 4 9 | N A T U R E | 1 4 9

COMMENT

©

2017

Macmillan

Publishers

Limited,

part

of

Springer

Nature.

All

rights

reserved.

quantum processors. For example, at
Rigetti we have developed an interface
called Quil2, which includes a set of basic
instructions for managing quantum gates
and classical processors and for reading
and writing to and from shared memory.
Second, researchers and engineers must
build and use open-source software for
quantum-computing applications. Third,
scientists need to establish a quantum-
programming community to nurture an
ecosystem of software. This community
must be interdisciplinary, inclusive and
focused on applications.

HYBRID SYSTEMS
Today’s quantum programming differs
from much previous theoretical work on
algorithms; it is becoming more and more
practical.

 Theoretical computer scientists have
been developing potential algorithms for
imagined quantum computers since the
1990s. Mathematician Peter Shor’s famous
code for breaking encryptions was one of the
first; many more are listed in the Quantum
Algorithm Zoo from the US National Insti-
tute of Standards and Technology (see
go.nature.com/2inmtco). These algorithms
are generally designed for big, noiseless
quantum computers, which are unlike the
devices that will be available within the next
five years. These will have tens to thou-
sands, not millions, of qubits, with little
redundancy to correct for internal errors.
They will calculate a limited range of things
in a noisy way. For example, they will not
be able to use Shor’s algorithm to find the
prime factors of large numbers. So their use
must be targeted: they will not always beat
conventional computers.

These limitations can be overcome by
building quantum processors as ‘accelerators’
to boost the performance of conventional
computers. A classical computer might, for
example, optimize operations to compen-
sate for noise in the quantum processor, or
aggregate answers from sequences of short
quantum programs. Such hybrid program-
ming has been demonstrated in quantum
chemistry3 and in optimization4. Algo-
rithms that run on small, superconducting
quantum processors have performed steps
in calculating the ground states of materi-
als and molecular systems, for example5,6.
Another algorithm has solved constrained
optimization problems, which are common
in areas such as machine learning, logistics
and scheduling4.

 We’ve found, however, that it can be
hard to predict the performance of hybrid
algorithms. For example, the quality of the
quantum subroutine in hybrid algorithms
for chemistry can vary greatly depending
on the system that is being simulated and
the mathematical tricks used. So hybrid

quantum-computing algorithms need to be
studied empirically, as they are for machine
learning. The way to find out how a system
works is to build it, see what it does and back
up any rules of thumb with mathematics
later. This work will begin in earnest once
the first quantum computers are available,
and it will accelerate fast.

 To reach this stage, researchers must
change their mindsets, and this could be
hard. We will find that some past work has
little utility. We’ve all seen talks on quantum
algorithms whose complexities are peppered
with huge exponents, meaning that they
could take millions of years to complete.
For the coming devices, such codes are so
impractical as to be useless.

Quantum programmers must care about
practical details such as noise models and
exact counts of logic
gates. They will have
to decide which qubits
in the computer to use
and how to deal with
ranges of operational
fidelities and low-level precisions that are
foreign to most modern programmers. But
the gain will be worth the pain.

In turn, hardware designers need to be
responsive to the choices and preferences
of quantum programmers, so that their
technology can become more useful.

OPEN SOFTWARE
Different classical computers behave
similarly enough to enable software writ-
ten for one to run on others. Early quantum
computers will have their own nuances, and
software for them will need to be bespoke.
When each operation and instruction
matters, generalized solutions need to be
optimized, and software and hardware
designed concurrently. Algorithms must be
discovered numerically rather than algebrai-
cally, and developed using simulators and
software rather than pens and paper.

Innovative digital tools are needed for
developing and testing algorithms, writing
software and programming the devices.
Quantum programmers should keep an eye
on the underlying physics, so that they are
aware of different types of noise in sequences
of pulses, for example. Performance bench-
marks, such as a suite of standard molecules
to simulate, are also necessary.

Differences between quantum and
classical programming begin at the instruc-
tion level. Classical computers use Boolean
logic — with basic operations such as AND,
NOT, OR. Operations in quantum com-
putations, such as multiplying tensors and
matrices, are much more complex and result
in unusual behaviour. For example, quan-
tum information cannot be cloned exactly
between processor registers; and reading
the state of a quantum register alters the

information stored in it.7 Hybrid software
needs to handle all these behaviours simply
enough for programmers to be able to code
easily. The result will be a new programming
paradigm, as object-oriented, probabilistic
and distributed programming once were.

Quantum programmers must decide
which aspects of the system are essential for
them to consider and which they can skim
over in practice. For example, executing a
program on superconducting quantum pro-
cessors requires instructions to be translated
many times. Control and readout instruc-
tions are converted from digital to analog to
quantum to analog to digital as they go from
the control hardware to the qubits and back.
Programmers don’t want to have to deal with
all the microwave engineering and physics,
but they need to be aware of how these pro-
cesses affect noise or the time it takes to run
the code. They need tools to work directly
with the devices, so that they can understand
and exploit the trade-offs.

Easy programming interfaces are crucial to
making quantum computers widely usable;
examples include Quil and OpenQASM8
from IBM. More sophisticated options still
need to be added, such as optimizations for
specific types of processors. Higher-level
languages for writing and compiling quantum
programs also need to be developed.

It is important that all these tools are
open source. Such a model was not avail-
able at the dawn of digital computing, but
its power to speed innovation, as with Linux
in the early days of the web, is essential
for the quantum-programming commu-
nity to grow quickly. We have made a start
with our quantum-programming toolkit,
Forest, which is written in Python, open
source and accessible to anyone. It joins an
exciting early ecosystem — much of it open
source — developed by different academic
and industrial research groups. Other exam-
ples are LIQUi|> (embedded in F#), Scaffold
(C++), Quipper (Haskell), QGL (Python),
ProjectQ (Python), QCL, QuIDDPro and
Chisel-Q (Scala). Researchers must resist
pressure to standardize tools prematurely
or keep the high-level, exploratory parts of
the programming stack proprietary.

BUILD A COMMUNITY
A new breed of quantum programmer is
needed to study and implement quantum
software — with a skillset between that
of a quantum information theorist and
a software engineer. Such programmers
will understand how quantum devices
operate well enough to instruct them and
minimize problems. They will be able to
build usable software and will have a deep
knowledge of the mathematics of quantum
algorithms and computation. Experts from
fields in which the software will be applied
must be closely involved if the code is to be

1 5 0 | N A T U R E | V O L 5 4 9 | 1 4 S E P T E M B E R 2 0 1 7

COMMENT

“We will find
that some past
work has little
utility.”

©

2017

Macmillan

Publishers

Limited,

part

of

Springer

Nature.

All

rights

reserved. ©

2017

Macmillan

Publishers

Limited,

part

of

Springer

Nature.

All

rights

reserved.

R
IG

ET
TI

 C
O

M
P

U
TI

N
G

truly useful. For example, chemists such as
Alán Aspuru-Guzik at Harvard University
in Cambridge, Massachusetts, drove interest
in using hybrid algorithms in quantum-
chemistry calculations. Researchers in other
fields, especially in machine learning and
optimization, should get on board.

Advanced kinds of education are needed
to train this new breed. Several centres are
well positioned to draw together the inter-
disciplinary skills and tools needed to offer
degrees in quantum-computer engineer-
ing: the Institute for Quantum Computing
at the University of Waterloo in Canada,
the Institute for Quantum Information and
Matter at the California Institute of Technol-
ogy in Pasadena, the quantum-engineering
doctoral training centres in the United
Kingdom, and QuSoft, the Dutch research
centre for quantum software in Amsterdam.
At Rigetti we have started a Junior Quantum
Engineer programme for bachelor’s degree
students, which includes training in quan-
tum programming. We have partnered with
the Quantum Machine Learning accelerator
at the Creative Destruction Lab (a technol-
ogy-transfer centre that fosters start-ups) at
the University of Toronto, Canada, to pro-
vide access to and support for Forest and
other programming tools.

Early-career quantum programmers have
tremendous opportunities to become lead-
ers of a transformational field. But they need

support. Their supervisors must recognize
that work on an open-source software pro-
ject might delay their next pure research
paper. They need industrial internships to
gain a broader practical perspective. And
they need institutional backing to work
between the fields of software engineering
and quantum physics.

NEXT STEPS
It is crucial that research on quantum-
computing algorithms is tied more closely
to research on the software that’s used to
implement them.

First, funders should insist that theoretical
work is implemented in software and, as
much as possible, tested on hardware. Second,
algorithm researchers must be explicit about
the architecture they are targeting. They
must show evidence of how algorithms will
be practically implemented on different
noisy systems. Third, funders and journal
editors must establish standard ways to
assess algorithm performance and resource
requirements. This will enable hardware and
software to improve together, and will sift
out the most viable algorithms more quickly.
Open-source tools should be used wherever
possible, and publications should encourage
the publication of code alongside results.

Finally, the quantum-computing
community must prioritize engagement
with experts in areas such as simulation and

machine learning. Quantum and classical
programmers must collaborate more. We
call on every current and aspiring quantum-
algorithm researcher to present their work at
a classical conference at least once in the next
year. It falls to us to expand the community
that will realize the incredible potential of
quantum computing. ■ SEE INSIGHT P. 171

Will Zeng is director of quantum cloud
services, Blake Johnson is director of
quantum engineering, Robert Smith
is senior software engineer, Nick Rubin is
senior applications researcher, Matt Reagor
is director of quantum engineering,
Colm Ryan is principal quantum engineer
and Chad Rigetti is chief executive at Rigetti
Computing in Berkeley, California, USA.
email: will@rigetti.com
1. 	Mohseni, M. et al. Nature 543, 171–174 (2017).
2.	 Smith, R. S., Curtis, M. J. & Zeng, W. J. Preprint at

https://arxiv.org/abs/1608.03355 (2016).
3.	 Rubin, N. Preprint at https://arxiv.org/

abs/1610.06910 (2016).
4.	 Farhi, E., Goldstone, J. & Gutmann, S. Preprint at

https://arxiv.org/abs/1411.4028 (2014).
5. 	Kandala, A. Preprint at https://arxiv.org/

abs/1704.05018 (2017).
6.	 O’Malley, P. J. J. et al. Phys. Rev. X, 6, 031007

(2016).
7.	 Hayes, B. Am. Sci. 102, 22–25 (2014).
8.	 Cross, A. W., Bishop, L. S., Smolin, J. A. &

Gambetta, J. M. Preprint at https://arxiv.org/
abs/1707.03429 (2017).

The authors declare competing financial interests;
see go.nature.com/2f7lrpk

Inside the clean room at Rigetti Computing’s Fab-1 facility in Fremont, California.

1 4 S E P T E M B E R 2 0 1 7 | V O L 5 4 9 | N A T U R E | 1 5 1

COMMENT

©

2017

Macmillan

Publishers

Limited,

part

of

Springer

Nature.

All

rights

reserved. ©

2017

Macmillan

Publishers

Limited,

part

of

Springer

Nature.

All

rights

reserved.

