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CLIMATE Insurance industry 
should collect a levy 
for adaptation p.152

ENGINEERING The recluse 
who revolutionized 
communications p.156

MUSIC An AI and language-
evolution researcher on his 
new Faust opera p.157

TECHNOLOGY Developing the 
Chinese typewriter was no 
easy task p.158

An 8-qubit quantum processor built by Rigetti Computing.

The world is about to have its first 
quantum computers. The complexity 
and power of quantum hardware, such 

as ion traps and superconducting qubits, are 
scaling up. Investment is flooding in: from 
governments, through the billion-dollar 
European Quantum Technology Flagship 
Program, for example; from companies, 
including Google, IBM, Intel and Microsoft; 
and from venture-capital firms, which have 

funded start-ups. One such is ours, Rigetti 
Computing, which in June opened the first 
dedicated facility for making quantum inte-
grated circuits: Fab-1 in Fremont, California. 
The vision is that commercial quantum- 
computing services will one day solve prob-
lems that used to be unimaginably hard, in 
areas from molecular design and machine 
learning to cybersecurity and logistics.1 

The problem is how best to program 

these devices. The stakes are high — get this 
wrong and we will have experiments that 
nobody can use instead of technology that 
can change the world.

We outline three developments that are 
needed over the next five years to ensure 
that the first quantum computers can be 
programmed to perform useful tasks. First, 
developers must think in terms of ‘hybrid’ 
approaches that combine classical and 

First quantum computers 
need smart software

Early devices must solve real-world problems, urge Will Zeng and colleagues.
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quantum processors. For example, at 
Rigetti we have developed an interface 
called Quil2, which includes a set of basic 
instructions for managing quantum gates 
and classical processors and for reading 
and writing to and from shared memory. 
Second, researchers and engineers must 
build and use open-source software for 
quantum-computing applications. Third, 
scientists need to establish a quantum-
programming community to nurture an 
ecosystem of software. This community 
must be interdisciplinary, inclusive and 
focused on applications.

HYBRID SYSTEMS
Today’s quantum programming differs 
from much previous theoretical work on 
algorithms; it is becoming more and more 
practical. 

 Theoretical computer scientists have 
been developing potential algorithms for 
imagined quantum computers since the 
1990s. Mathematician Peter Shor’s famous 
code for breaking encryptions was one of the 
first; many more are listed in the Quantum 
Algorithm Zoo from the US National Insti-
tute of Standards and Technology (see 
go.nature.com/2inmtco). These algorithms 
are generally designed for big, noiseless 
quantum computers, which are unlike the 
devices that will be available within the next 
five years. These will have tens to thou-
sands, not millions, of qubits, with little 
redundancy to correct for internal errors. 
They will calculate a limited range of things 
in a noisy way. For example, they will not 
be able to use Shor’s algorithm to find the 
prime factors of large numbers. So their use 
must be targeted: they will not always beat 
conventional computers. 

These limitations can be overcome by 
building quantum processors as ‘accelerators’ 
to boost the performance of conventional 
computers. A classical computer might, for 
example, optimize operations to compen-
sate for noise in the quantum processor, or 
aggregate answers from sequences of short 
quantum programs. Such hybrid program-
ming has been demonstrated in quantum 
chemistry3 and in optimization4. Algo-
rithms that run on small, superconducting 
quantum processors have performed steps 
in calculating the ground states of materi-
als and molecular systems, for example5,6. 
Another algorithm has solved constrained 
optimization problems, which are common 
in areas such as machine learning, logistics 
and scheduling4.

 We’ve found, however, that it can be 
hard to predict the performance of hybrid 
algorithms. For example, the quality of the 
quantum subroutine in hybrid algorithms 
for chemistry can vary greatly depending 
on the system that is being simulated and 
the mathematical tricks used. So hybrid 

quantum-computing algorithms need to be 
studied empirically, as they are for machine 
learning. The way to find out how a system 
works is to build it, see what it does and back 
up any rules of thumb with mathematics 
later. This work will begin in earnest once 
the first quantum computers are available, 
and it will accelerate fast.

 To reach this stage, researchers must 
change their mindsets, and this could be 
hard. We will find that some past work has 
little utility. We’ve all seen talks on quantum 
algorithms whose complexities are peppered 
with huge exponents, meaning that they 
could take millions of years to complete. 
For the coming devices, such codes are so 
impractical as to be useless.

Quantum programmers must care about 
practical details such as noise models and 
exact counts of logic 
gates. They will have 
to decide which qubits 
in the computer to use 
and how to deal with 
ranges of operational 
fidelities and low-level precisions that are 
foreign to most modern programmers. But 
the gain will be worth the pain.

In turn, hardware designers need to be 
responsive to the choices and preferences 
of quantum programmers, so that their 
technology can become more useful.

OPEN SOFTWARE
Different classical computers behave 
similarly enough to enable software writ-
ten for one to run on others. Early quantum 
computers will have their own nuances, and 
software for them will need to be bespoke. 
When each operation and instruction 
matters, generalized solutions need to be 
optimized, and software and hardware 
designed concurrently. Algorithms must be 
discovered numerically rather than algebrai-
cally, and developed using simulators and 
software rather than pens and paper.

Innovative digital tools are needed for 
developing and testing algorithms, writing 
software and programming the devices. 
Quantum programmers should keep an eye 
on the underlying physics, so that they are 
aware of different types of noise in sequences 
of pulses, for example. Performance bench-
marks, such as a suite of standard molecules 
to simulate, are also necessary.

Differences between quantum and 
classical programming begin at the instruc-
tion level. Classical computers use Boolean 
logic — with basic operations such as AND, 
NOT, OR. Operations in quantum com-
putations, such as multiplying tensors and 
matrices, are much more complex and result 
in unusual behaviour. For example, quan-
tum information cannot be cloned exactly 
between processor registers; and reading 
the state of a quantum register alters the 

information stored in it.7 Hybrid software 
needs to handle all these behaviours simply 
enough for programmers to be able to code 
easily. The result will be a new programming 
paradigm, as object-oriented, probabilistic 
and distributed programming once were.

Quantum programmers must decide 
which aspects of the system are essential for 
them to consider and which they can skim 
over in practice. For example, executing a 
program on superconducting quantum pro-
cessors requires instructions to be translated 
many times. Control and readout instruc-
tions are converted from digital to analog to 
quantum to analog to digital as they go from 
the control hardware to the qubits and back. 
Programmers don’t want to have to deal with 
all the microwave engineering and physics, 
but they need to be aware of how these pro-
cesses affect noise or the time it takes to run 
the code. They need tools to work directly 
with the devices, so that they can understand 
and exploit the trade-offs.

Easy programming interfaces are crucial to 
making quantum computers widely usable; 
examples include Quil and OpenQASM8 
from IBM. More sophisticated options still 
need to be added, such as optimizations for 
specific types of processors. Higher-level 
languages for writing and compiling quantum 
programs also need to be developed.

It is important that all these tools are 
open source. Such a model was not avail-
able at the dawn of digital computing, but 
its power to speed innovation, as with Linux 
in the early days of the web, is essential 
for the quantum-programming commu-
nity to grow quickly. We have made a start 
with our quantum-programming toolkit, 
Forest, which is written in Python, open 
source and accessible to anyone. It joins an 
exciting early ecosystem — much of it open 
source — developed by different academic 
and industrial research groups. Other exam-
ples are LIQUi|> (embedded in F#), Scaffold 
(C++), Quipper (Haskell), QGL (Python), 
ProjectQ (Python), QCL, QuIDDPro and 
Chisel-Q (Scala). Researchers must resist 
pressure to standardize tools prematurely 
or keep the high-level, exploratory parts of 
the programming stack proprietary.

BUILD A COMMUNITY
A new breed of quantum programmer is 
needed to study and implement quantum 
software — with a skillset between that 
of a quantum information theorist and 
a software engineer. Such programmers 
will understand how quantum devices 
operate well enough to instruct them and 
minimize problems. They will be able to 
build usable software and will have a deep 
knowledge of the mathematics of quantum 
algorithms and computation. Experts from 
fields in which the software will be applied 
must be closely involved if the code is to be 
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truly useful. For example, chemists such as 
Alán Aspuru-Guzik at Harvard University 
in Cambridge, Massachusetts, drove interest 
in using hybrid algorithms in quantum-
chemistry calculations. Researchers in other 
fields, especially in machine learning and 
optimization, should get on board.

Advanced kinds of education are needed 
to train this new breed. Several centres are 
well positioned to draw together the inter-
disciplinary skills and tools needed to offer 
degrees in quantum-computer engineer-
ing: the Institute for Quantum Computing 
at the University of Waterloo in Canada, 
the Institute for Quantum Information and 
Matter at the California Institute of Technol-
ogy in Pasadena, the quantum-engineering 
doctoral training centres in the United 
Kingdom, and QuSoft, the Dutch research 
centre for quantum software in Amsterdam. 
At Rigetti we have started a Junior Quantum 
Engineer programme for bachelor’s degree 
students, which includes training in quan-
tum programming. We have partnered with 
the Quantum Machine Learning accelerator 
at the Creative Destruction Lab (a technol-
ogy-transfer centre that fosters start-ups) at 
the University of Toronto, Canada, to pro-
vide access to and support for Forest and 
other programming tools.

Early-career quantum programmers have 
tremendous opportunities to become lead-
ers of a transformational field. But they need 

support. Their supervisors must recognize 
that work on an open-source software pro-
ject might delay their next pure research 
paper. They need industrial internships to 
gain a broader practical perspective. And 
they need institutional backing to work 
between the fields of software engineering 
and quantum physics.

NEXT STEPS
It is crucial that research on quantum-
computing algorithms is tied more closely 
to research on the software that’s used to 
implement them. 

First, funders should insist that theoretical 
work is implemented in software and, as 
much as possible, tested on hardware. Second, 
algorithm researchers must be explicit about 
the architecture they are targeting. They 
must show evidence of how algorithms will 
be practically implemented on different 
noisy systems. Third, funders and journal 
editors must establish standard ways to 
assess algorithm performance and resource 
requirements. This will enable hardware and 
software to improve together, and will sift 
out the most viable algorithms more quickly. 
Open-source tools should be used wherever 
possible, and publications should encourage 
the publication of code alongside results.

Finally,  the quantum-computing 
community must prioritize engagement 
with experts in areas such as simulation and 

machine learning. Quantum and classical 
programmers must collaborate more. We 
call on every current and aspiring quantum-
algorithm researcher to present their work at 
a classical conference at least once in the next 
year. It falls to us to expand the community 
that will realize the incredible potential of 
quantum computing. ■ SEE INSIGHT P. 171
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Inside the clean room at Rigetti Computing’s Fab-1 facility in Fremont, California.
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