Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
In this short review, we focus on the development of CO2 separation materials consisting of hydrogel particles. The review starts with development of stimuli responsive micro- and nano-gel particles that reversibly absorb CO2 isn response. The next chapter focuses on the development of temperature-responsive hydrogel films consisting of gel particles that reversibly absorb CO2 and the importance of optimizing the pKa values of the amines in the particles. In the end, assembly of defect-free nano-meter-thick CO2 separation membranes consisting of the amine containing hydrogel particles are introduced.
The fluorophore-modified glucan, TPE-6BG3 adopts an extended, random-coiled form in DMSO, which does not fluoresce. The morphology of the TPE-6BG3 chemosensor changes drastically to a dynamic globule in aqueous media. The dynamic, “induced-fit” globule selectively and sensitively recognizes the medicinally-useful tetrasaccharide, acarbose via glucan-saccharide coaggregation.
Free-standing films of trifluoropropyl-substituted open-cage silsesquioxane-pendant polysiloxane by optimizing sol-gel reaction condition of tris(dimethoxysilyl-ethyl-dimethylsiloxy)-heptatrifluoropropyl-substituted open-cage silsesquioxane. Elastic modulus and the decomposition temperature for 5% weight loss under N2 of the product by polycondensation at 180 °C were significantly higher than that by polycondensation at 50 °C. Significant changes in the UV-vis spectra of the resulting transparent films were hardly observed even after 13 days of UV irradiation.
The in situ wide-angle (WAXD) and small-angle X-ray scattering (SAXS) measurements have been performed using a synchrotron microbeam technique for the melt-isothermally-growing iPP spherulites. The thus-collected data were found to be classified into three sets of totally different WAXD/SAXS patterns, from which the three different orientation modes of the stacked lamellae and related crystallographic axes were deduced. These structural information allowed us to discuss the growth mechanism of stacked lamellae in the iPP spherulites from the microscopic point of view.
Hydrogels have attracted considerable attention in the biomedical applications because of their high functionalities, biocompatibility and biodegradability. This study on the novel hyaluronic acid (HA) nanogel-based hydrogel comprising HA modified with cholesterol derivatives and maleimide crosslinking groups. Depending on the degree of cholesterol derivative substitution, the properties such as water uptake, gelation behavior and protein encapsulation was investigated. The results suggested that the hydrogels enhanced peptide and protein trapping abilities have potential as a new hyaluronan hydrogel for biomedical applications.
The study on the improvement of the crystallinity of cellulose II by post-treatment with dilute NaOH solution showed that the crystallinity was significantly improved by post-treatment with multiple cycles. The NaOH in an aqueous NaOH solution penetrated only inaccessible surface regions, and cellulose rearrangement occurred only in these regions during post-treatment, improving crystal size. In the second and subsequent posttreatment cycles, cellulose rearrangement occurred only at the inaccessible surfaces expanded during the previous post-treatment cycle, crystallization progressed toward amorphous regions away from the initial crystalline regions.
As porous polymer materials with continuous epoxy skeletons and pores, epoxy monoliths exhibit unique mechanical properties and fracture behavior different from the bulk thermoset of epoxy resins. In this article, we describe the thermal properties, pore structures, and mechanical properties of epoxy resins with tensile and compressive deformation of the monoliths. In addition, a change in the inner porous structure after large deformation was nondestructively observed by X-ray CT imaging.
Fabrication of LCD cell without alignment layer on substrates was achieved via simply adding the chiral polymer nanoparticles into CLC mixtures. The fabricated chiral nanoparticle (CNP) doped CLC cell shows a high contrast 97.4% and a fast response time 7.6 ms.
Achieving a wearable artificial kidney hinges on overcoming the critical challenge of developing efficient urea adsorption materials for dialysate regeneration. An acidic hollow polystyrene nanoparticle was synthesized by modified emulsion polymerization, DMF etching and sulfuric acid treatment sequentially. The nanoparticles had a urea absorption capacity of up to 1 mmol/g after two hours of adsorption in a 30 mM urea aqueous solution at 37 °C. Additionally, the adsorption capacity dramatically increased with increasing urea concentration, while sharply decreased with increasing ionic strength.
To develop a novel gel catalyst system for a selective reaction, we prepared a variety of gels with homogeneously dispersed crosslinked domain (CD) structures containing iridium complexes with various crosslinking densities. The designed CD gel catalyst catalyzed the N-alkylation of aniline with benzyl alcohol, and the steric effect of the CD structure allowed the selective formation of the secondary amine product by controlling the access of the substrate to the iridium complex.