Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Volume 55 Issue 2, February 2023

Focus Review

  • This review outlines the research across the areas of polymer chemistry and cryobiology We discuss the solutions to problems in cryobiology from the viewpoint of polymeric materials science and the applications of polymer-based cryobiology for biomedical applications. We explain how the recent advances in polymer research have enabled the development of innovative polymeric cryoprotectants with novel mechanisms and the development of state-of-the-art methods for the intracellular delivery of substances, such as drugs, using a cryobiological technique called the freeze-concentration effect.

    • Kazuaki Matsumura
    • Robin Rajan
    • Sana Ahmed
    Focus Review Open Access
  • Recent advances in polymer informatics are reviewed, focusing on experimental research. Data-driven analyses, predictions, and suggestions are becoming more practical, despite the appropriate treatments of higher-order structures and process information acting as bottlenecks. After summarizing recent developments, future challenges in polymer informatics are discussed.

    • Kan Hatakeyama-Sato
    Focus Review
Top of page ⤴

Original Article

  • We develop aldehyde-functionalized conjugated microporous polymer (CMPs) via Pd-catalyzed direct arylation polymerization strategy. The method avoids the pre-fucntionalization and reduces the number of synthetic steps. The polymers exhibit strong visible light absorption (red edge of λabs = 605 nm) and solid-state fluorescence (λem = 620 nm; ϕf = 5%). The pendant aldehyde functional group in the polymer enables selective fluorescent chemosensing of aliphatic and aromatic amines by enhancing the fluorescence of aliphatic amines and performing fluorescence quenching for aromatic amines.

    • Monika Bai M. G
    • Atul B. Nipate
    • M. Rajeswara Rao
    Original Article
  • The effect of different types of maleic anhydride-modified polypropylene on interfacial shear strength for carbon fiber-reinforced polypropylene composites: The effect of three types of maleic anhydride-modified polypropylenes (MAPP) on the interfacial shear strength (IFSS) of PP and carbon fiber (CF) were investigated. The localization of MAPP at the interface enabled sufficient chemical interaction regardless of MA content of MAPP, and the differences of MA content had little IFSS dependences. When the chemical interaction is sufficient at the interface, the IFSS values were attributed to the crystallinity at the interphase, which depends on the natures such as crystallinity of MAPP added.

    • Ayaka Yamaguchi
    • Michio Urushisaki
    • Tamotsu Hashimoto
    Original Article
  • Water-insoluble poly(methacrylic acid) (poly(MAAc)) sponges with nanolayered structures were fabricated via thermal cross-linking with poly(vinyl alcohol) (PVA). The cross-linked sponges contained up to 75 wt% poly(MAAc) when the molecular weight of PVA and the cross-linking time were adjusted appropriately. After immersion in a NaClO·5H2O aqueous solution, all poly(MAAc)/PVA_50 wt% sponges with different PVA molecular weights were completely dissolved. Multilayer films of poly(MAAc)/PVA with different physicochemical properties were also fabricated. Among potential applications, these sponges can be used as adsorption materials for low molecular weight compounds and heavy metal ions.

    • Daiki Kobayashi
    • Haruki Uchida
    • Yohei Kotsuchibashi
    Original Article
  • Fused expanded pyridinium cation (FEP) was introduced as a side chain of the polymer by click reaction. The obtained polymer offered membranes with good flexibility and showed excellent anion conductivity of 123.4 mS cm–1 at 80 °C under 80% relative humidity, although ion-exchange capacity of the polymer was quite low (0.77). Remarkable conductivity of the membranes is likely due to the weak interaction between FEP cation and OH, which increases the ion mobility and concentration of OH.

    • Yuki Motoishi
    • Naoki Tanaka
    • Tsuyohiko Fujigaya
    Original Article
Top of page ⤴

Search

Quick links