Browse Articles

Filter By:

  • Triptycene-containing polymers featuring a rigid propeller-shaped structure have attracted attention for a wide range of potential applications including guest recognition, material transports, separations, catalysis, and organic electronics. Herein, with a thorough literature survey, we present the synthesis of the various types of triptycenes that provide components for functional polymers. We particularly focus on triptycene-containing polymers and two-dimensional assemblies based on the space-filling design that uses nested packing. Future perspectives on the functionalities brought about by the design of triptycene-containing polymers and molecular assemblies are also discussed.

    • Fumitaka Ishiwari
    • Yoshiaki Shoji
    • Takanori Fukushima
    ReviewOpen Access
  • The effects of an organic monoglyceride (OMG) plasticizer on the crystallization of the PLLA/PDLA (50/50) blend were investigated by examining the isothermal crystallization of the blend with different contents of OMG (1–5 wt%) using POM, DSC, and time-resolved WAXD. It was found that the increase of the OMG content promoted the exclusive formation of stereocomplex crystallites and enhanced its crystallinity while suppressing the formation of homocrystals.

    • Neimatallah Hosni Mohammed Mahmoud
    • Hideaki Takagi
    • Shinichi Sakurai
    Original Article
  • The thiol-Michael polyaddition of three dialkynyl monomers with several dithiols proceeded using triethylamine as the catalyst to give unsaturated poly(ester-thioether)s with the expected structures (Mn, 2.4 × 103 to 22.6 × 103; molecular dispersity index [Mw/Mn], 1.26–2.00). All of the poly(ester-thioester)s had single glass-transition temperature values between −27 and 49 °C. While the rigid main chains improved the glass transition temperature, all of the poly(ester-thioester)s showed apparent enzymatic hydrolysis by lipase but low biodegradability in biodegradation tests using activated sludge.

    • Katsuhisa Yano
    • Akinori Takasu
    • Hiroshi Eguchi
    Original ArticleOpen Access
  • The Suzuki–Miyaura coupling reaction of BrC6H4-SiRR’-C6H4Br 1 with phenylboronic acid 3 in the presence of tBu3PPd precatalyst 4 and CsF/18-crown-6 produced a phenyl-disubstituted product, indicating that the Pd catalyst underwent catalyst transfer on the silylene group. The polycondensation of 1 and phenylenediboronic acid 2 yielded cyclic polymers even when excess 1 was used. The obtained cyclic polymers containing the silylene group showed stronger fluorescence in solution than did the methylene counterpart.

    • Natsumi Harada
    • Rina Yachida
    • Tsutomu Yokozawa
  • Three cyclic oxoester-thioester hybrid monomers were studied for anionic and cationic ring-opening polymerizations. Anionic polymerizations using thiol with 2,6-lutidine were successful for the chemoselective cleavage of the thioester with the thiol propagating end, exhibiting the living character to some extent. The polymerization in 2,6-lutidine without an initiator produced macrocyclic polymers. The cationic polymerizations occurred with the aid of CF3SO3H and benzyl alcohol but involved side reactions with low chemoselective ring cleavage. The thioester unit caused the polymers to exhibit a lower Tg with greater thermal and photo degradability.

    • Mao Hirata
    • Tomoki Yoshimatsu
    • Masato Suzuki
    Original ArticleOpen Access
  • Doping lanthanides into lamellar crystals of diacetylene derivatives with terminal carboxylic acids reorganized the lamellar structure and dramatically changed the crystal morphology. Detailed investigation of the crystal growth process revealed that the complexes of lanthanide and diacetylene derivatives, which are slightly formed in the solution phase during lanthanide doping, may act as a pseudonuclear agent and change the morphology of the lamellar crystals. Furthermore, the morphology changes of the lamellar crystal films significantly altered surface properties such as film appearance and water repellency.

    • Michinari Kohri
    • Sojiro Isomura
    • Keiki Kishikawa
    Original ArticleOpen Access
  • Simple control of the thermoresponsive properties of polymers in water over a broad range is achieved by using a designed urethane-containing acrylamide monomer in combination with a hydroxy-containing precursor monomer, which forms a statistical sequence due to its similar backbone. The copolymers exhibited a lower critical solution temperature-type responsive behavior in water, and the effects of structural factors such as composition, molecular weight, end groups and side-chain structure in urethane monomers were systematically evaluated.

    • Shohei Ida
    • Ryu Hashiguchi
    • Shokyoku Kanaoka
    Original Article
  • Natural rubber exhibits the strain-induced crystallization (SIC). By using WAXD, the orientation of NR crystal formed by SIC under planar elongation was revisited. We found that the orientational state of the crystal lattice possesses a continuous margin of the orientation angle between 6.4 and 19.6° for the ac plane with respect to the surface of the specimen sheet in the real NR specimen. This orientational state could be accomplished as a result of balancing the preferential parallel orientation of (120) planes (the slip planes) and C = C planes with respect to the surface of the specimen sheet.

    • Ruito Tanaka
    • Tomohiro Yasui
    • Shinichi Sakurai
    Original Article
  • We synthesized a new benzobisthiazole (BBTz) containing building unit in which two alkoxythiophenes were attached to the BBTz moiety so as to induce oxygen–sulfur noncovalent intramolecular interactions and thereby interlock the linkage. As a result, the π-conjugated polymer incorporating the new building unit, PDBTz2, had a more coplanar and rigid backbone than the alkyl counterpart, PDBTz1. Interestingly, the backbone orientation was completely altered from the edge-on orientation (PDBTz1) to the face-on orientation (PDBTz2), which is preferable for organic photovoltaics. Accordingly, PDBTz2 showed a much higher photovoltaic performance than PDBTz1.

    • Shuhei Doi
    • Tsubasa Mikie
    • Itaru Osaka
    Original ArticleOpen Access
  • The surface properties of the star polymer coating were evaluated with their resistance to protein adsorption and surface zeta (ζ)-potential to clarify the mechanism for inhibition of cell adhesion. The surface of the star polymer coating with a high density of poly(2-hydroxyethyl methacrylate) formed an electrically neutral diffuse brush structure in water and showed high resistance to protein adsorption. Considering the data obtained in the study, the surface ζ-potential and antibiofouling properties were correlated by controlling the molecular architecture of the coating material.

    • Masayasu Totani
    • Hiroharu Ajiro
    • Tsuyoshi Ando
  • Developing fluorescence anion sensors is important because anions play a significant role in various biological phenomena. Herein, we evaluated the anion binding properties of a polyhedral oligomeric silsesquioxane (POSS) derivative with eight urea groups and a 3D structure. The results revealed that the POSS derivative with urea groups can bind to sulfate ions and exhibits a greater binding ability than that of the model compound because multiple urea groups exhibit cooperative effects. Through the introduction of naphthyl urea groups, the POSS derivative can be used as a fluorescence sensor for quantifying sulfate ions.

    • Hayato Narikiyo
    • Masayuki Gon
    • Yoshiki Chujo
    Original Article
  • Soft interfaces formed by polymer materials are important interfaces for biological systems (biointerfaces). Controlled radical polymerization (CRP) is highly suited for designing biointerfaces composed of polymer chains because it enables precise control of the polymer architecture at the nanoscale. This focus review describes the design of functional soft interfaces based on investigations of the structure-property relationships of CRPs. In particular, polymer brush surfaces showing autonomous property changes, comb-type copolymer-driven 2D/3D transformations of lipid bilayers, and molecular interactions in bactericidal cationic polymer brushes are depicted.

    • Tsukuru Masuda
    Focus ReviewOpen Access
  • Surface amino groups (SAGs) on nanochitin materials were quantified using three amino-labeling reagents and two cationic dyes. After binding to SAGs, the excess labeling reagents or generated molecules were assessed by spectrophotometry. The dyes were adsorbed onto SAGs, and the excess was similarly quantified. The obtained values were compared with the titration values. Although the values by labeling reagents were underestimated, some of the values were proportional to those by titration. Reliable results were attained using the two labeling reagents with conversion equations or using Acid Orange 7 adsorption.

    • Jun Araki
    • Shiori Yoda
    • Riku Kudo
  • The morphology and physical properties of polyisoprene ionomers co-neutralized with Na+ and Mg2+ in different ratios have been studied. The mechanical and self-healing properties of the ionomer were reinforced and disturbed, respectively, at over 25 % of the Mg2+ ratio, where linkage via Mg2+ in the network is pervasive throughout the material.

    • Rina Takahashi
    • Taro Udagawa
    • Yohei Miwa
  • The in situ wide-angle (WAXD) and small-angle X-ray scattering (SAXS) measurements have been performed using a synchrotron microbeam technique for the melt-isothermally-growing iPP spherulites. The thus-collected data were found to be classified into three sets of totally different WAXD/SAXS patterns, from which the three different orientation modes of the stacked lamellae and related crystallographic axes were deduced. These structural information allowed us to discuss the growth mechanism of stacked lamellae in the iPP spherulites from the microscopic point of view.

    • Kohji Tashiro
    • Hiroko Yamamoto
    • Yuichi Miyake
    Original Article
  • Water-insoluble micropatterned films were prepared from poly(vinyl alcohol) (PVA) (or ethylene-vinyl alcohol copolymer (EVOH)) and poly(methacrylic acid) (poly(MAAc)). The carboxy groups in poly(MAAc) underwent dehydration reactions with the hydroxy groups in the vinyl alcohol units during heating at 135 °C, which resulted in the introduction of a crosslinked structure with ester bonds into the polymeric network of the micropatterned films. The micropatterns could be peeled off from the films after decomposition and maintained their patterned shapes.

    • Haruki Uchida
    • Wakako Uchiyama
    • Yohei Kotsuchibashi
    Original Article