Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer

Abstract

Tumors use several strategies to evade the host immune response, including creation of an immune-suppressive and hostile tumor environment. Tissue hypoxia due to inadequate blood supply is reported to develop very early during tumor establishment. Hypoxic stress has a strong impact on tumor cell biology. In particular, tissue hypoxia contributes to therapeutic resistance, heterogeneity and progression. It also interferes with immune plasticity, promotes the differentiation and expansion of immune-suppressive stromal cells, and remodels the metabolic landscape to support immune privilege. Therefore, tissue hypoxia has been regarded as a central factor for tumor aggressiveness and metastasis. In this regard, manipulating host–tumor interactions in the context of the hypoxic tumor microenvironment may be important in preventing or reverting malignant conversion. We will discuss how tumor microenvironment-driven transient compositional tumor heterogeneity involves hypoxic stress. Tumor hypoxia is a therapeutic concern since it can reduce the effectiveness of conventional therapies as well as cancer immunotherapy. Thus, understanding how tumor and stromal cells respond to hypoxia will allow for the design of innovative cancer therapies that can overcome these barriers. A better understanding of hypoxia-dependent mechanisms involved in the regulation of immune tolerance could lead to new strategies to enhance antitumor immunity. Therefore, discovery and validation of therapeutic targets derived from the hypoxic tumor microenvironment is of major importance. In this context, critical hypoxia-associated pathways are attractive targets for immunotherapy of cancer. In this review, we summarize current knowledge regarding the molecular mechanisms induced by tumor cell hypoxia with a special emphasis on therapeutic resistance and immune suppression. We emphasize mechanisms of manipulating hypoxic stress and its associated pathways, which may support the development of more durable and successful cancer immunotherapy approaches in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

Abbreviations

CSC:

Cancer stem cells

CTC:

Circulating tumor cells

CTL:

Cytotoxic T lymphocytes

DC:

Dendritic cells

EMT:

Epithelial-to-mesenchymal transition

HIF:

Hypoxia-inducible factor

MDSC:

Myeloid-derived suppressive cells

NK:

Natural killer cells

PD-L1:

Programmed death-ligand 1

TAMs:

Tumorassociated macrophages

TGF-β:

Transforming growth factor-β

Treg:

T regulatory cells.

Treg:

T regulatory cells

VEGF:

vascular endothelial growth factor.

References

  1. Homet Moreno B, Ribas A . Anti-programmed cell death protein-1/ligand-1 therapy in different cancers. Br J Cancer 2015; 112: 1421–1427.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Noman MZ, Messai Y, Carre T, Akalay I, Meron M, Janji B et al. Microenvironmental hypoxia orchestrating the cell stroma cross talk, tumor progression and antitumor response. Crit Rev Immunol 2011; 31: 357–377.

    CAS  PubMed  Google Scholar 

  3. Terry S, Chouaib S . EMT in immuno-resistance. Oncoscience 2015; 2: 841–842.

    PubMed  PubMed Central  Google Scholar 

  4. Hamai A, Benlalam H, Meslin F, Hasmim M, Carre T, Akalay I et al. Immune surveillance of human cancer: if the cytotoxic T-lymphocytes play the music, does the tumoral system call the tune? Tissue Antigens 2010; 75: 1–8.

    Article  CAS  PubMed  Google Scholar 

  5. Noman MZ, Benlalam H, Hasmim M, Chouaib S . Cytotoxic T cells—stroma interactions. Bull Cancer 2011; 98: E19–E24.

    PubMed  Google Scholar 

  6. Noman MZ, Chouaib S . Targeting hypoxia at the forefront of anticancer immune responses. Oncoimmunology 2014; 3: e954463.

    PubMed  Google Scholar 

  7. Noman MZ, Hasmim M, Messai Y, Terry S, Kieda C, Janji B et al. Hypoxia: a key player in antitumor immune response. A review in the theme: cellular responses to hypoxia. Am J Physiol Cell Physiol 2015; 309: C569–C579.

    PubMed  PubMed Central  Google Scholar 

  8. Semenza GL . HIF-1 inhibitors for cancer therapy: from gene expression to drug discovery. Curr Pharm Des 2009; 15: 3839–3843.

    CAS  PubMed  Google Scholar 

  9. Semenza GL . Hypoxia-inducible factors in physiology and medicine. Cell 2012; 148: 399–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Semenza GL . Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 2012; 33: 207–214.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Messai Y, Noman MZ, Hasmim M, Escudier B, Chouaib S . HIF-2alpha/ITPR1 axis: a new saboteur of NK-mediated lysis. Oncoimmunology 2015; 4: e985951.

    PubMed  PubMed Central  Google Scholar 

  12. Nakamura H, Makino Y, Okamoto K, Poellinger L, Ohnuma K, Morimoto C et al. TCR engagement increases hypoxia-inducible factor-1 alpha protein synthesis via rapamycin-sensitive pathway under hypoxic conditions in human peripheral T cells. J Immunol 2005; 174: 7592–7599.

    CAS  PubMed  Google Scholar 

  13. Lukashev D, Caldwell C, Ohta A, Chen P, Sitkovsky M . Differential regulation of two alternatively spliced isoforms of hypoxia-inducible factor-1 alpha in activated T lymphocytes. J Biol Chem 2001; 276: 48754–48763.

    CAS  PubMed  Google Scholar 

  14. Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 2011; 146: 772–784.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ohta A, Diwanji R, Kini R, Subramanian M, Sitkovsky M . In vivo T cell activation in lymphoid tissues is inhibited in the oxygen-poor microenvironment. Front Immunol 2011; 2: 27.

    PubMed  PubMed Central  Google Scholar 

  16. Caldwell CC, Kojima H, Lukashev D, Armstrong J, Farber M, Apasov SG et al. Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. J Immunol 2001; 167: 6140–6149.

    CAS  PubMed  Google Scholar 

  17. Doedens AL, Phan AT, Stradner MH, Fujimoto JK, Nguyen JV, Yang E et al. Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen. Nat Immunol 2013; 14: 1173–1182.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Finlay DK, Rosenzweig E, Sinclair LV, Feijoo-Carnero C, Hukelmann JL, Rolf J et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J Exp Med 2012; 209: 2441–2453.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Robbins JR, Lee SM, Filipovich AH, Szigligeti P, Neumeier L, Petrovic M et al. Hypoxia modulates early events in T cell receptor-mediated activation in human T lymphocytes via Kv1.3 channels. J Physiol 2005; 564: 131–143.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lukashev D, Klebanov B, Kojima H, Grinberg A, Ohta A, Berenfeld L et al. Cutting edge: hypoxia-inducible factor 1alpha and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes. J Immunol 2006; 177: 4962–4965.

    CAS  PubMed  Google Scholar 

  21. Thiel M, Chouker A, Ohta A, Jackson E, Caldwell C, Smith P et al. Oxygenation inhibits the physiological tissue-protecting mechanism and thereby exacerbates acute inflammatory lung injury. PLoS Biol 2005; 3: e174.

    PubMed  PubMed Central  Google Scholar 

  22. Thiel M, Caldwell CC, Kreth S, Kuboki S, Chen P, Smith P et al. Targeted deletion of HIF-1alpha gene in T cells prevents their inhibition in hypoxic inflamed tissues and improves septic mice survival. PLoS One 2007; 2: e853.

    PubMed  PubMed Central  Google Scholar 

  23. Palazon A, Martinez-Forero I, Teijeira A, Morales-Kastresana A, Alfaro C, Sanmamed MF et al. The HIF-1alpha hypoxia response in tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy. Cancer Disc 2012; 2: 608–623.

    CAS  Google Scholar 

  24. Hatfield SM, Kjaergaard J, Lukashev D, Schreiber TH, Belikoff B, Abbott R et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med 2015; 7: 277–ra230.

    Google Scholar 

  25. Mellor AL, Munn DH . Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat Rev 2008; 8: 74–80.

    CAS  Google Scholar 

  26. Payen VL, Porporato PE, Baselet B, Sonveaux P . Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway. Cell Mol Life Sci 2016; 73: 1333–1348.

    CAS  PubMed  Google Scholar 

  27. Lardner A . The effects of extracellular pH on immune function. J Leukoc Biol 2001; 69: 522–530.

    CAS  PubMed  Google Scholar 

  28. Nakagawa Y, Negishi Y, Shimizu M, Takahashi M, Ichikawa M, Takahashi H . Effects of extracellular pH and hypoxia on the function and development of antigen-specific cytotoxic T lymphocytes. Immunol Lett 2015; 167: 72–86.

    CAS  PubMed  Google Scholar 

  29. Redegeld F, Filippini A, Sitkovsky M . Comparative studies of the cytotoxic T lymphocyte-mediated cytotoxicity and of extracellular ATP-induced cell lysis. Different requirements in extracellular Mg2+ and pH. J Immunol 1991; 147: 3638–3645.

    CAS  PubMed  Google Scholar 

  30. Ratner S . Lymphocytes stimulated with recombinant human interleukin-2: relationship between motility into protein matrix and in vivo localization in normal and neoplastic tissues of mice. J Natl Cancer Inst 1990; 82: 612–616.

    CAS  PubMed  Google Scholar 

  31. Lugini L, Matarrese P, Tinari A, Lozupone F, Federici C, Iessi E et al. Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells. Cancer Res 2006; 66: 3629–3638.

    CAS  PubMed  Google Scholar 

  32. Droge W, Roth S, Altmann A, Mihm S . Regulation of T-cell functions by L-lactate. Cell Immunol 1987; 108: 405–416.

    CAS  PubMed  Google Scholar 

  33. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 2007; 109: 3812–3819.

    CAS  PubMed  Google Scholar 

  34. Blay J, White TD, Hoskin DW . The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 1997; 57: 2602–2605.

    CAS  PubMed  Google Scholar 

  35. Sitkovsky MV . Damage control by hypoxia-inhibited AK. Blood 2008; 111: 5424–5425.

    CAS  PubMed  Google Scholar 

  36. Hoskin DW, Mader JS, Furlong SJ, Conrad DM, Blay J . Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells (Review). Int J Oncol 2008; 32: 527–535.

    CAS  PubMed  Google Scholar 

  37. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 2007; 204: 1257–1265.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kobie JJ, Shah PR, Yang L, Rebhahn JA, Fowell DJ, Mosmann TR . T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5'-adenosine monophosphate to adenosine. J Immunol 2006; 177: 6780–6786.

    CAS  PubMed  Google Scholar 

  39. Lukashev D, Ohta A, Sitkovsky M . Hypoxia-dependent anti-inflammatory pathways in protection of cancerous tissues. Cancer Metastasis Rev 2007; 26: 273–279.

    CAS  PubMed  Google Scholar 

  40. Tan S, Zhou F, Nielsen VG, Wang Z, Gladson CL, Parks DA . Sustained hypoxia-ischemia results in reactive nitrogen and oxygen species production and injury in the premature fetal rabbit brain. J Neuropathol Exp Neurol 1998; 57: 544–553.

    CAS  PubMed  Google Scholar 

  41. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 2007; 13: 828–835.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 2011; 208: 1949–1962.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Barsoum IB, Smallwood CA, Siemens DR, Graham CH . A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 2014; 74: 665–674.

    CAS  PubMed  Google Scholar 

  44. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 2014; 211: 781–790.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yamada N, Yamanegi K, Ohyama H, Hata M, Nakasho K, Futani H et al. Hypoxia downregulates the expression of cell surface MICA without increasing soluble MICA in osteosarcoma cells in a HIF-1alpha-dependent manner. Int J Oncol 2012; 41: 2005–2012.

    CAS  PubMed  Google Scholar 

  46. Noman MZ, Janji B, Berchem G, Chouaib S . miR-210 and hypoxic microvesicles: two critical components of hypoxia involved in the regulation of killer cells function. Cancer Lett 2015, e-pub ahead of print 30 October 2015 doi:10.1016/j.canlet.2015.10.026.

    CAS  PubMed  Google Scholar 

  47. Sarkar S, Germeraad WT, Rouschop KM, Steeghs EM, van Gelder M, Bos GM et al. Hypoxia induced impairment of NK cell cytotoxicity against multiple myeloma can be overcome by IL-2 activation of the NK cells. PLoS One 2013; 8: e64835.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sceneay J, Chow MT, Chen A, Halse HM, Wong CS, Andrews DM et al. Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res 2012; 72: 3906–3911.

    CAS  PubMed  Google Scholar 

  49. Wolter F, Glassner A, Kramer B, Kokordelis P, Finnemann C, Kaczmarek DJ et al. Hypoxia impairs anti-viral activity of natural killer (NK) cells but has little effect on anti-fibrotic NK cell functions in hepatitis C virus infection. J Hepatol 2015; 63: 1334–1344.

    CAS  PubMed  Google Scholar 

  50. Baginska J, Viry E, Berchem G, Poli A, Noman MZ, van Moer K et al. Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc Natl Acad Sci USA 2013; 110: 17450–17455.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tittarelli A, Janji B, Van Moer K, Noman MZ, Chouaib S . The selective degradation of synaptic Connexin 43 protein by hypoxia-induced autophagy impairs natural killer cell-mediated tumor cell killing. J Biol Chem 2015; 290: 23670–23679.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang J, Han C, Dai H, Hou J, Dong Y, Cui X et al. Hypoxia-inducible factor-2alpha limits natural killer T cell cytotoxicity in renal ischemia/reperfusion injury. J Am Soc Nephrol 2016; 27: 92–106.

    PubMed  Google Scholar 

  53. Noman MZ, Janji B, Kaminska B, Van Moer K, Pierson S, Przanowski P et al. Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression. Cancer Res 2011; 71: 5976–5986.

    CAS  PubMed  Google Scholar 

  54. Noman MZ, Janji B, Berchem G, Mami-Chouaib F, Chouaib S . Hypoxia-induced autophagy: a new player in cancer immunotherapy? Autophagy 2012; 8: 704–706.

    CAS  PubMed  Google Scholar 

  55. Noman MZ, Buart S, Romero P, Ketari S, Janji B, Mari B et al. Hypoxia-inducible miR-210 regulates the susceptibility of tumor cells to lysis by cytotoxic T cells. Cancer Res 2012; 72: 4629–4641.

    CAS  PubMed  Google Scholar 

  56. Viry E, Baginska J, Berchem G, Noman MZ, Medves S, Chouaib S et al. Autophagic degradation of GZMB/granzyme B: a new mechanism of hypoxic tumor cell escape from natural killer cell-mediated lysis. Autophagy 2014; 10: 173–175.

    CAS  PubMed  Google Scholar 

  57. Messai Y, Noman MZ, Hasmim M, Janji B, Tittarelli A, Boutet M et al. ITPR1 protects renal cancer cells against natural killer cells by inducing autophagy. Cancer Res 2014; 74: 6820–6832.

    CAS  PubMed  Google Scholar 

  58. Messai Y, Noman MZ, Janji B, Hasmim M, Escudier B, Chouaib S . The autophagy sensor ITPR1 protects renal carcinoma cells from NK-mediated killing. Autophagy 2015, e-pub ahead of print 25 February 2015..

  59. Clambey ET, McNamee EN, Westrich JA, Glover LE, Campbell EL, Jedlicka P et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc Natl Acad Sci USA 2012; 109: E2784–E2793.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 2011; 208: 1367–1376.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kryczek I, Wu K, Zhao E, Wei S, Vatan L, Szeliga W et al. IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer. J Immunol 2011; 186: 4388–4395.

    CAS  PubMed  Google Scholar 

  62. Lee JH, Elly C, Park Y, Liu YC . E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1alpha to maintain regulatory T cell stability and suppressive capacity. Immunity 2015; 42: 1062–1074.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 2011; 475: 226–230.

    CAS  PubMed  Google Scholar 

  64. Allavena P, Mantovani A . Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol 2012; 167: 195–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chafe SC, Dedhar S . Carving out its niche: a role for carbonic anhydrase IX in pre-metastatic niche development. Oncoimmunology 2015; 4: e1048955.

    PubMed  PubMed Central  Google Scholar 

  66. Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegue E et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 2008; 13: 206–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lin S, Wan S, Sun L, Hu J, Fang D, Zhao R et al. Chemokine C-C motif receptor 5 and C-C motif ligand 5 promote cancer cell migration under hypoxia. Cancer Sci 2012; 103: 904–912.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Obermajer N, Muthuswamy R, Odunsi K, Edwards RP, Kalinski P . PGE(2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Res 2011; 71: 7463–7470.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Takehara H, Iwamoto J, Mizokami Y, Takahashi K, Ootubo T, Miura S et al. Involvement of cyclooxygenase-2—prostaglandin E2 pathway in interleukin-8 production in gastric cancer cells. Dig Dis Sci 2006; 51: 2188–2197.

    CAS  PubMed  Google Scholar 

  70. Casazza A, Laoui D, Wenes M, Rizzolio S, Bassani N, Mambretti M et al. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 2013; 24: 695–709.

    CAS  PubMed  Google Scholar 

  71. Movahedi K, Laoui D, Gysemans C, Baeten M, Stange G, Van den Bossche J et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 2010; 70: 5728–5739.

    CAS  PubMed  Google Scholar 

  72. Martinez FO, Sica A, Mantovani A, Locati M . Macrophage activation and polarization. Front Biosci 2008; 13: 453–461.

    CAS  PubMed  Google Scholar 

  73. Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P et al. HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 2010; 207: 2439–2453.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG et al. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 2010; 70: 7465–7475.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Burke B, Giannoudis A, Corke KP, Gill D, Wells M, Ziegler-Heitbrock L et al. Hypoxia-induced gene expression in human macrophages: implications for ischemic tissues and hypoxia-regulated gene therapy. Am J Pathol 2003; 163: 1233–1243.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Fingleton B, Vargo-Gogola T, Crawford HC, Matrisian LM . Matrilysin [MMP-7] expression selects for cells with reduced sensitivity to apoptosis. Neoplasia 2001; 3: 459–468.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hasmim M, Noman MZ, Messai Y, Bordereaux D, Gros G, Baud V et al. Cutting edge: Hypoxia-induced Nanog favors the intratumoral infiltration of regulatory T cells and macrophages via direct regulation of TGF-beta1. J Immunol 2013; 191: 5802–5806.

    CAS  PubMed  Google Scholar 

  78. Cairns RA, Harris I, McCracken S, Mak TW . Cancer cell metabolism. Cold Spring Harb Symp Quant Biol 2011; 76: 299–311.

    CAS  PubMed  Google Scholar 

  79. Bellone M, Calcinotto A . Ways to enhance lymphocyte trafficking into tumors and fitness of tumor infiltrating lymphocytes. Front Oncol 2013; 3: 231.

    PubMed  PubMed Central  Google Scholar 

  80. Jayson GC, Kerbel R, Ellis LM, Harris AL . Antiangiogenic therapy in oncology: current status and future directions. Lancet 2016, e-pub ahead of print 4 February 2016 doi:10.1016/S0140-6736(15)01088-0.

    CAS  Google Scholar 

  81. Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med 2014; 20: 607–615.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Curran MA, Montalvo W, Yagita H, Allison JP . PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 2010; 107: 4275–4280.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD et al. Combined Nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015; 373: 23–34.

    PubMed  PubMed Central  Google Scholar 

  84. Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ et al2014. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 15: 700–712.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Royal RE, Levy C, Turner K, Mathur A, Hughes M, Kammula US et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother 2010; 33: 828–833.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Widmer DS, Hoek KS, Cheng PF, Eichhoff OM, Biedermann T, Raaijmakers MI et al. Hypoxia contributes to melanoma heterogeneity by triggering HIF1alpha-dependent phenotype switching. J Invest Dermatol 2013; 133: 2436–2443.

    CAS  PubMed  Google Scholar 

  87. Lin Q, Yun Z . Impact of the hypoxic tumor microenvironment on the regulation of cancer stem cell characteristics. Cancer Biol Ther 2010; 9: 949–956.

    CAS  PubMed  Google Scholar 

  88. Yeung TM, Gandhi SC, Bodmer WF . Hypoxia and lineage specification of cell line-derived colorectal cancer stem cells. Proc Natl Acad Sci USA 2011; 108: 4382–4387.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Quail DF, Joyce JA . Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19: 1423–1437.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Schumacher TN, Schreiber RD . Neoantigens in cancer immunotherapy. Science 2015; 348: 69–74.

    CAS  PubMed  Google Scholar 

  91. Kotsakis A, Vetsika EK, Christou S, Hatzidaki D, Vardakis N, Aggouraki D et al. Clinical outcome of patients with various advanced cancer types vaccinated with an optimized cryptic human telomerase reverse transcriptase (TERT) peptide: results of an expanded phase II study. Ann Oncol 2012; 23: 442–449.

    CAS  PubMed  Google Scholar 

  92. Scardino A, Gross DA, Alves P, Schultze JL, Graff-Dubois S, Faure O et al. HER-2/neu and hTERT cryptic epitopes as novel targets for broad spectrum tumor immunotherapy. J Immunol 2002; 168: 5900–5906.

    CAS  PubMed  Google Scholar 

  93. Saggar JK, Yu M, Tan Q, Tannock IF . The tumor microenvironment and strategies to improve drug distribution. Front Oncol 2013; 3: 154.

    PubMed  PubMed Central  Google Scholar 

  94. Becker JC, Andersen MH, Schrama D, Thor Straten P . Immune-suppressive properties of the tumor microenvironment. Cancer Immunol Immunother 2013; 62: 1137–1148.

    CAS  PubMed  Google Scholar 

  95. Ben-Shoshan J, Maysel-Auslender S, Mor A, Keren G, George J . Hypoxia controls CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1alpha. Eur J Immunol 2008; 38: 2412–2418.

    CAS  PubMed  Google Scholar 

  96. Sceneay J, Parker BS, Smyth MJ, Moller A . Hypoxia-driven immunosuppression contributes to the pre-metastatic niche. Oncoimmunology 2013; 2: e22355.

    PubMed  PubMed Central  Google Scholar 

  97. Krtolica A, Le Moan N, Serwer L, Yoshida Y, Ozawa T, Butowski N et al. Treatment with OMX-4.80, a tumor-penetrating tunable oxygen carrier, reduces tumor hypoxia and dramatically enhances radiation therapy in intra-cranial models of glioblastoma. Neuro Oncol 2014; 16 (Suppl 2): ii3–ii4.

    PubMed Central  Google Scholar 

  98. Wilson WR, Hay MP . Targeting hypoxia in cancer therapy. Nat Rev Cancer 2011; 11: 393–410.

    CAS  PubMed  Google Scholar 

  99. Metelo AM, Noonan H, Iliopoulos O . HIF2a inhibitors for the treatment of VHL disease. Oncotarget 2015; 6: 23036–23037.

    PubMed  PubMed Central  Google Scholar 

  100. Xia Y, Choi HK, Lee K . Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur J Med Chem 2012; 49: 24–40.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Chouaib.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouaib, S., Noman, M., Kosmatopoulos, K. et al. Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer. Oncogene 36, 439–445 (2017). https://doi.org/10.1038/onc.2016.225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.225

This article is cited by

Search

Quick links