Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The biology and clinical significance of acquired genomic copy number aberrations and recurrent gene mutations in chronic lymphocytic leukemia

Abstract

Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world and remains incurable with conventional chemotherapy treatment approaches. CLL as a disease entity is defined by a relatively parsimonious set of diagnostic criteria and therefore likely constitutes an umbrella term for multiple related illnesses. Of the enduring fundamental biological processes that affect the biology and clinical behavior of CLL, few are as central to the pathogenesis of CLL as recurrent acquired genomic copy number aberrations (aCNA) and recurrent gene mutations. Here, a state-of-the-art overview of the pathological anatomy of the CLL genome is presented, including detailed descriptions of the anatomy of aCNA and gene mutations. Data from SNP array profiling and large-scale sequencing of large CLL cohorts, as well as stimulated karyotyping, are discussed. This review is organized by discussions of the anatomy, underlying pathomechanisms and clinical significance of individual genomic lesions and recurrent gene mutations. Finally, gaps in knowledge regarding the biological and clinical effects of recurrent genomic aberrations or gene mutations on CLL are outlined to provide critical stimuli for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Shanafelt TD, Hanson C, Dewald GW, Witzig TE, LaPlant B, Abrahamzon J et al. Karyotype evolution on fluorescent in situ hybridization analysis is associated with short survival in patients with chronic lymphocytic leukemia and is related to CD49d expression. J Clin Oncol 2008; 26: e5–e6.

    PubMed  Google Scholar 

  2. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  CAS  PubMed  Google Scholar 

  3. Pettitt AR, Jackson R, Carruthers S, Dodd J, Dodd S, Oates M et al. Alemtuzumab in combination with methylprednisolone is a highly effective induction regimen for patients with chronic lymphocytic leukemia and deletion of TP53: Final results of the National Cancer Research Institute CLL206 Trial. J Clin Oncol 2012; 30: 1647–1655.

    CAS  PubMed  Google Scholar 

  4. Spaner DE . Oral high-dose glucocorticoids and ofatumumab in fludarabine-resistant chronic lymphocytic leukemia. Leukemia 2012; 26: 1144–1145.

    CAS  PubMed  Google Scholar 

  5. Stilgenbauer S, Zenz T, Winkler D, Buhler A, Schlenk RF, Groner S et al. Subcutaneous alemtuzumab in fludarabine-refractory chronic lymphocytic leukemia: clinical results and prognostic marker analyses from the CLL2H study of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol 2009; 27: 3994–4001.

    CAS  PubMed  Google Scholar 

  6. Castro JE, James DF, Sandoval-Sus JD, Jain S, Bole J, Rassenti L et al. Rituximab in combination with high-dose methylprednisolone for the treatment of chronic lymphocytic leukemia. Leukemia 2009; 23: 1779–1789.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Parikh SA, Keating MJ, O’Brien S, Wang X, Ferrajoli A, Faderl S et al. Frontline chemoimmunotherapy with fludarabine, cyclophosphamide, alemtuzumab, and rituximab for high-risk chronic lymphocytic leukemia. Blood 2011; 118: 2062–2068.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dreger P, Dohner H, Ritgen M, Bottcher S, Busch R, Dietrich S et al. Allogeneic stem cell transplantation provides durable disease control in poor-risk chronic lymphocytic leukemia: long-term clinical and MRD results of the German CLL Study Group CLL3X trial. Blood 2010; 116: 2438–2447.

    CAS  PubMed  Google Scholar 

  9. Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 2011; 365: 2497–2506.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 2011; 44: 47–52.

    PubMed  Google Scholar 

  11. Zhang X, Reis M, Khoriaty R, Li Y, Ouillette P, Samayoa J et al. Sequence analysis of 515 kinase genes in chronic lymphocytic leukemia. Leukemia 2011; 25: 1908–1910.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ouillette P, Collins R, Shakhan S, Li J, Peres E, Kujawski L et al. Acquired genomic copy number aberrations and survival in chronic lymphocytic leukemia. Blood 2011; 118: 3051–3061.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gunnarsson R, Mansouri L, Isaksson A, Goransson H, Cahill N, Jansson M et al. Array-based genomic screening at diagnosis and during follow-up in chronic lymphocytic leukemia. Haematologica 2011; 96: 1161–1169.

    PubMed  PubMed Central  Google Scholar 

  14. Gunnarsson R, Isaksson A, Mansouri M, Goransson H, Jansson M, Cahill N et al. Large but not small copy-number alterations correlate to high-risk genomic aberrations and survival in chronic lymphocytic leukemia: a high-resolution genomic screening of newly diagnosed patients. Leukemia 2010; 24: 211–215.

    CAS  PubMed  Google Scholar 

  15. Lehmann S, Ogawa S, Raynaud SD, Sanada M, Nannya Y, Ticchioni M et al. Molecular allelokaryotyping of early-stage, untreated chronic lymphocytic leukemia. Cancer 2008; 112: 1296–1305.

    CAS  PubMed  Google Scholar 

  16. Pfeifer D, Pantic M, Skatulla I, Rawluk J, Kreutz C, Martens UM et al. Genome-wide analysis of DNA copy number changes and LOH in CLL using high-density SNP arrays. Blood 2007; 109: 1202–1210.

    CAS  PubMed  Google Scholar 

  17. Brown JR, Hanna M, Tesar B, Werner L, Pochet N, Asara JM et al. Integrative genomic analysis implicates gain of PIK3CA at 3q26 and MYC at 8q24 in chronic lymphocytic leukemia. Clin Cancer Res 2012; 18: 3791–3802.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Grubor V, Krasnitz A, Troge JE, Meth JL, Lakshmi B, Kendall JT et al. Novel genomic alterations and clonal evolution in chronic lymphocytic leukemia revealed by representational oligonucleotide microarray analysis (ROMA). Blood 2009; 113: 1294–1303.

    CAS  PubMed  Google Scholar 

  19. Kay NE, Eckel-Passow JE, Braggio E, Vanwier S, Shanafelt TD, Van Dyke DL et al. Progressive but previously untreated CLL patients with greater array CGH complexity exhibit a less durable response to chemoimmunotherapy. Cancer Genet Cytogenet 2010; 203: 161–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Saddler C, Ouillette P, Kujawski L, Shangary S, Talpaz M, Kaminski M et al. Comprehensive biomarker and genomic analysis identifies p53 status as the major determinant of response to MDM2 inhibitors in chronic lymphocytic leukemia. Blood 2008; 111: 1584–1593.

    CAS  PubMed  Google Scholar 

  21. Ouillette P, Erba H, Kujawski L, Kaminski M, Shedden K, Malek SN . Integrated genomic profiling of chronic lymphocytic leukemia identifies subtypes of deletion 13q14. Cancer Res 2008; 68: 1012–1021.

    CAS  PubMed  Google Scholar 

  22. Kujawski L, Ouillette P, Erba H, Saddler C, Jakubowiak A, Kaminski M et al. Genomic complexity identifies patients with aggressive chronic lymphocytic leukemia. Blood 2008; 112: 1993–2003.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T . Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia 2007; 21: 2442–2451.

    CAS  PubMed  Google Scholar 

  24. Ouillette P, Fossum S, Parkin B, Ding L, Bockenstedt P, Al-Zoubi A et al. Aggressive chronic lymphocytic leukemia with elevated genomic complexity is associated with multiple gene defects in the response to DNA double-strand breaks. Clin Cancer Res 2010; 16: 835–847.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Britt-Compton B, Lin TT, Ahmed G, Weston V, Jones RE, Fegan C et al. Extreme telomere erosion in ATM-mutated and 11q-deleted CLL patients is independent of disease stage. Leukemia 2012; 26: 826–830.

    CAS  PubMed  Google Scholar 

  26. Augereau A, T’Kint de Roodenbeke C, Simonet T, Bauwens S, Horard B, Callanan M et al. Telomeric damage in early stage of chronic lymphocytic leukemia correlates with shelterin dysregulation. Blood 2011; 118: 1316–1322.

    CAS  PubMed  Google Scholar 

  27. Lin TT, Letsolo BT, Jones RE, Rowson J, Pratt G, Hewamana S et al. Telomere dysfunction and fusion during the progression of chronic lymphocytic leukemia: evidence for a telomere crisis. Blood 2010; 116: 1899–1907.

    CAS  PubMed  Google Scholar 

  28. Brugat T, Nguyen-Khac F, Grelier A, Merle-Beral H, Delic J . Telomere dysfunction-induced foci arise with the onset of telomeric deletions and complex chromosomal aberrations in resistant chronic lymphocytic leukemia cells. Blood 2010; 116: 239–249.

    CAS  PubMed  Google Scholar 

  29. Roos G, Krober A, Grabowski P, Kienle D, Buhler A, Dohner H et al. Short telomeres are associated with genetic complexity, high-risk genomic aberrations, and short survival in chronic lymphocytic leukemia. Blood 2008; 111: 2246–2252.

    CAS  PubMed  Google Scholar 

  30. Bullrich F, Veronese ML, Kitada S, Jurlander J, Caligiuri MA, Reed JC et al. Minimal region of loss at 13q14 in B-cell chronic lymphocytic leukemia. Blood 1996; 88: 3109–3115.

    CAS  PubMed  Google Scholar 

  31. Liu Y, Hermanson M, Grander D, Merup M, Wu X, Heyman M et al. 13q deletions in lymphoid malignancies. Blood 1995; 86: 1911–1915.

    CAS  PubMed  Google Scholar 

  32. Kalachikov S, Migliazza A, Cayanis E, Fracchiolla NS, Bonaldo MF, Lawton L et al. Cloning and gene mapping of the chromosome 13q14 region deleted in chronic lymphocytic leukemia. Genomics 1997; 42: 369–377.

    CAS  PubMed  Google Scholar 

  33. Kitamura E, Su G, Sossey-Alaoui K, Malaj E, Lewis J, Pan HQ et al. A transcription map of the minimally deleted region from 13q14 in B-cell chronic lymphocytic leukemia as defined by large scale sequencing of the 650 kb critical region. Oncogene 2000; 19: 5772–5780.

    CAS  PubMed  Google Scholar 

  34. Kapanadze B, Makeeva N, Corcoran M, Jareborg N, Hammarsund M, Baranova A et al. Comparative sequence analysis of a region on human chromosome 13q14, frequently deleted in B-cell chronic lymphocytic leukemia, and its homologous region on mouse chromosome 14. Genomics 2000; 70: 327–334.

    CAS  PubMed  Google Scholar 

  35. Migliazza A, Bosch F, Komatsu H, Cayanis E, Martinotti S, Toniato E et al. Nucleotide sequence, transcription map, and mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic leukemia. Blood 2001; 97: 2098–2104.

    CAS  PubMed  Google Scholar 

  36. Mabuchi H, Fujii H, Calin G, Alder H, Negrini M, Rassenti L et al. Cloning and characterization of CLLD6, CLLD7, and CLLD8, novel candidate genes for leukemogenesis at chromosome 13q14, a region commonly deleted in B-cell chronic lymphocytic leukemia. Cancer Res 2001; 61: 2870–2877.

    CAS  PubMed  Google Scholar 

  37. Ouillette P, Collins R, Shakhan S, Li J, Li C, Shedden K et al. The prognostic significance of various 13q14 deletions in chronic lymphocytic leukemia. Clin Cancer Res 2011; 17: 6778–6790.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mosca L, Fabris S, Lionetti M, Todoerti K, Agnelli L, Morabito F et al. Integrative genomics analyses reveal molecularly distinct subgroups of B-cell chronic lymphocytic leukemia patients with 13q14 deletion. Clin Cancer Res 2010; 16: 5641–5653.

    CAS  PubMed  Google Scholar 

  39. Parker H, Rose-Zerilli MJ, Parker A, Chaplin T, Wade R, Gardiner A et al. 13q deletion anatomy and disease progression in patients with chronic lymphocytic leukemia. Leukemia 2011; 25: 489–497.

    CAS  PubMed  Google Scholar 

  40. Fazi C, Scarfo L, Pecciarini L, Cottini F, Dagklis A, Janus A et al. General population low-count CLL-like MBL persists over time without clinical progression, although carrying the same cytogenetic abnormalities of CLL. Blood 2011; 118: 6618–6625.

    CAS  PubMed  Google Scholar 

  41. Lanasa MC, Allgood SD, Slager SL, Dave SS, Love C, Marti GE et al. Immunophenotypic and gene expression analysis of monoclonal B-cell lymphocytosis shows biologic characteristics associated with good prognosis CLL. Leukemia 2011; 25: 1459–1466.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sampath D, Liu C, Vasan K, Sulda M, Puduvalli VK, Wierda WG et al. Histone deacetylases mediate the silencing of miR-15a, miR-16 and miR-29b in chronic lymphocytic leukemia. Blood 2012; 119: 1162–1172.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer cell 2010; 17: 28–40.

    CAS  PubMed  Google Scholar 

  45. Lia M, Carette A, Tang H, Shen Q, Mo T, Bhagat G et al. Functional dissection of the chromosome 13q14 tumor-suppressor locus using transgenic mouse lines. Blood 2012; 119: 2981–2990.

    CAS  PubMed  Google Scholar 

  46. Raveche ES, Salerno E, Scaglione BJ, Manohar V, Abbasi F, Lin YC et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood 2007; 109: 5079–5086.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hammarsund M, Corcoran MM, Wilson W, Zhu C, Einhorn S, Sangfelt O et al. Characterization of a novel B-CLL candidate gene--DLEU7--located in the 13q14 tumor suppressor locus. FEBS Lett 2004; 556: 75–80.

    CAS  PubMed  Google Scholar 

  48. Brown JR, Hanna M, Tesar B, Pochet N, Vartanov A, Fernandes SM et al. Germline copy number variation associated with Mendelian inheritance of CLL in two families. Leukemia 2012; 26: 1710–1713.

    CAS  PubMed  Google Scholar 

  49. Palamarchuk A, Efanov A, Nazaryan N, Santanam U, Alder H, Rassenti L et al. 13q14 deletions in CLL involve cooperating tumor suppressors. Blood 2010; 115: 3916–3922.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dal Bo M, Rossi FM, Rossi D, Deambrogi C, Bertoni F, Del Giudice I et al. 13q14 deletion size and number of deleted cells both influence prognosis in chronic lymphocytic leukemia. Genes Chromosomes Cancer 2011; 50: 633–643.

    Google Scholar 

  51. Liu Y, Szekely L, Grander D, Soderhall S, Juliusson G, Gahrton G et al. Chronic lymphocytic leukemia cells with allelic deletions at 13q14 commonly have one intact RB1 gene: evidence for a role of an adjacent locus. Proc Natl Acad Sci USA 1993; 90: 8697–8701.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Stilgenbauer S, Dohner H, Bulgay-Morschel M, Weitz S, Bentz M, Lichter P . High frequency of monoallelic retinoblastoma gene deletion in B-cell chronic lymphoid leukemia shown by interphase cytogenetics. Blood 1993; 81: 2118–2124.

    CAS  PubMed  Google Scholar 

  53. Shanafelt TD, Witzig TE, Fink SR, Jenkins RB, Paternoster SF, Smoley SA et al. Prospective evaluation of clonal evolution during long-term follow-up of patients with untreated early-stage chronic lymphocytic leukemia. J Clin Oncol 2006; 24: 4634–4641.

    PubMed  Google Scholar 

  54. Malcikova J, Smardova J, Rocnova L, Tichy B, Kuglik P, Vranova V et al. Monoallelic and biallelic inactivation of TP53 gene in chronic lymphocytic leukemia: selection, impact on survival and response to DNA damage. Blood 2009; 114: 5307–5314.

    CAS  PubMed  Google Scholar 

  55. Zenz T, Habe S, Denzel T, Mohr J, Winkler D, Buhler A et al. Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood 2009; 114: 2589–2597.

    CAS  PubMed  Google Scholar 

  56. Rossi D, Cerri M, Deambrogi C, Sozzi E, Cresta S, Rasi S et al. The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of Del17p13: implications for overall survival and chemorefractoriness. Clin Cancer Res 2009; 15: 995–1004.

    CAS  PubMed  Google Scholar 

  57. Dohner H, Fischer K, Bentz M, Hansen K, Benner A, Cabot G et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood 1995; 85: 1580–1589.

    CAS  PubMed  Google Scholar 

  58. Zenz T, Krober A, Scherer K, Habe S, Buhler A, Benner A et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood 2008; 112: 3322–3329.

    CAS  PubMed  Google Scholar 

  59. Dicker F, Herholz H, Schnittger S, Nakao A, Patten N, Wu L et al. The detection of TP53 mutations in chronic lymphocytic leukemia independently predicts rapid disease progression and is highly correlated with a complex aberrant karyotype. Leukemia 2009; 23: 117–124.

    CAS  PubMed  Google Scholar 

  60. Rosenwald A, Chuang EY, Davis RE, Wiestner A, Alizadeh AA, Arthur DC et al. Fludarabine treatment of patients with chronic lymphocytic leukemia induces a p53-dependent gene expression response. Blood 2004; 104: 1428–1434.

    CAS  PubMed  Google Scholar 

  61. Tam CS, Shanafelt TD, Wierda WG, Abruzzo LV, Van Dyke DL, O’Brien S et al. De novo deletion 17p13.1 chronic lymphocytic leukemia shows significant clinical heterogeneity: the M. D. Anderson and Mayo Clinic experience. Blood 2009; 114: 957–964.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Best OG, Gardiner AC, Davis ZA, Tracy I, Ibbotson RE, Majid A et al. A subset of Binet stage A CLL patients with TP53 abnormalities and mutated IGHV genes have stable disease. Leukemia 2009; 23: 212–214.

    CAS  PubMed  Google Scholar 

  63. Knight SJ, Yau C, Clifford R, Timbs AT, Sadighi Akha E, Dreau HM et al. Quantification of subclonal distributions of recurrent genomic aberrations in paired pre-treatment and relapse samples from patients with B-cell chronic lymphocytic leukemia. Leukemia 2012; 26: 1564–1575.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Braggio E, Kay NE, Vanwier S, Tschumper RC, Smoley S, Eckel-Passow JE et al. Longitudinal genome-wide analysis of patients with chronic lymphocytic leukemia reveals complex evolution of clonal architecture at disease progression and at the time of relapse. Leukemia 2012; 26: 1698–1701.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Stilgenbauer S, Sander S, Bullinger L, Benner A, Leupolt E, Winkler D et al. Clonal evolution in chronic lymphocytic leukemia: acquisition of high-risk genomic aberrations associated with unmutated VH, resistance to therapy, and short survival. Haematologica 2007; 92: 1242–1245.

    PubMed  Google Scholar 

  66. Rossi S, Shimizu M, Barbarotto E, Nicoloso MS, Dimitri F, Sampath D et al. microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood 2010; 116: 945–952.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Fegan C, Robinson H, Thompson P, Whittaker JA, White D . Karyotypic evolution in CLL: identification of a new sub-group of patients with deletions of 11q and advanced or progressive disease. Leukemia 1995; 9: 2003–2008.

    CAS  PubMed  Google Scholar 

  68. Neilson JR, Auer R, White D, Bienz N, Waters JJ, Whittaker JA et al. Deletions at 11q identify a subset of patients with typical CLL who show consistent disease progression and reduced survival. Leukemia 1997; 11: 1929–1932.

    CAS  PubMed  Google Scholar 

  69. Saiya-Cork K, Collins R, Parkin B, Ouillette P, Kuizon E, Kujawski L et al. A pathobiological role of the insulin receptor in chronic lymphocytic leukemia. Clin Cancer Res 2011; 17: 2679–2692.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rossi D, Fangazio M, Rasi S, Vaisitti T, Monti S, Cresta S et al. Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood 2012; 119: 2854–2862.

    CAS  PubMed  Google Scholar 

  71. Mohr J, Helfrich H, Fuge M, Eldering E, Buhler A, Winkler D et al. DNA damage-induced transcriptional program in CLL: biological and diagnostic implications for functional p53 testing. Blood 2011; 117: 1622–1632.

    CAS  PubMed  Google Scholar 

  72. Herling M, Patel KA, Weit N, Lilienthal N, Hallek M, Keating MJ et al. High TCL1 levels are a marker of B-cell receptor pathway responsiveness and adverse outcome in chronic lymphocytic leukemia. Blood 2009; 114: 4675–4686.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tsimberidou AM, Tam C, Abruzzo LV, O’Brien S, Wierda WG, Lerner S et al. Chemoimmunotherapy may overcome the adverse prognostic significance of 11q deletion in previously untreated patients with chronic lymphocytic leukemia. Cancer 2009; 115: 373–380.

    PubMed  Google Scholar 

  74. Dohner H, Stilgenbauer S, James MR, Benner A, Weilguni T, Bentz M et al. 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood 1997; 89: 2516–2522.

    CAS  PubMed  Google Scholar 

  75. Shedden K, Li Y, Ouillette P, Malek SN . Characteristics of chronic lymphocytic leukemia with somatically acquired mutations in NOTCH1 exon 34. Leukemia 2012; 26: 1108–1110.

    CAS  PubMed  Google Scholar 

  76. Balatti V, Bottoni A, Palamarchuk A, Alder H, Rassenti LZ, Kipps TJ et al. NOTCH1 mutations in CLL associated with trisomy 12. Blood 2012; 119: 329–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lopez C, Delgado J, Costa D, Conde L, Ghita G, Villamor N et al. Different distribution of NOTCH1 mutations in chronic lymphocytic leukemia with isolated trisomy 12 or associated with other chromosomal alterations. Genes Chromosomes Cancer 2012; 51: 881–889.

    CAS  PubMed  Google Scholar 

  78. Del Giudice I, Rossi D, Chiaretti S, Marinelli M, Tavolaro S, Gabrielli S et al. NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL. Haematologica 2012; 97: 437–441.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Decker S, Zirlik K, Djebatchie L, Hartmann D, Ihorst G, Schmitt-Graeff A et al. Trisomy 12 and elevated GLI1 and PTCH1 transcript levels are biomarkers for Hedgehog-inhibitor responsiveness in CLL. Blood 2012; 119: 997–1007.

    CAS  PubMed  Google Scholar 

  80. Zenz T, Vollmer D, Trbusek M, Smardova J, Benner A, Soussi T et al. TP53 mutation profile in chronic lymphocytic leukemia: evidence for a disease specific profile from a comprehensive analysis of 268 mutations. Leukemia 2010; 24: 2072–2079.

    CAS  PubMed  Google Scholar 

  81. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475: 101–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 2011; 208: 1389–1401.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Trbusek M, Smardova J, Malcikova J, Sebejova L, Dobes P, Svitakova M et al. Missense mutations located in structural p53 DNA-binding motifs are associated with extremely poor survival in chronic lymphocytic leukemia. J Clin Oncol 2011; 29: 2703–2708.

    CAS  PubMed  Google Scholar 

  84. Gaidano G, Ballerini P, Gong JZ, Inghirami G, Neri A, Newcomb EW et al. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci USA 1991; 88: 5413–5417.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zainuddin N, Murray F, Kanduri M, Gunnarsson R, Smedby KE, Enblad G et al. TP53 mutations are infrequent in newly diagnosed chronic lymphocytic leukemia. Leuk Res 2011; 35: 272–274.

    CAS  PubMed  Google Scholar 

  86. Johnson GG, Sherrington PD, Carter A, Lin K, Liloglou T, Field JK et al. A novel type of p53 pathway dysfunction in chronic lymphocytic leukemia resulting from two interacting single nucleotide polymorphisms within the p21 gene. Cancer Res 2009; 69: 5210–5217.

    CAS  PubMed  Google Scholar 

  87. el Rouby S, Thomas A, Costin D, Rosenberg CR, Potmesil M, Silber R et al. p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene expression. Blood 1993; 82: 3452–3459.

    CAS  PubMed  Google Scholar 

  88. Wattel E, Preudhomme C, Hecquet B, Vanrumbeke M, Quesnel B, Dervite I et al. p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood 1994; 84: 3148–3157.

    CAS  PubMed  Google Scholar 

  89. Gonzalez D, Martinez P, Wade R, Hockley S, Oscier D, Matutes E et al. Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial. J Clin Oncol 2011; 29: 2223–2229.

    PubMed  Google Scholar 

  90. Zenz T, Eichhorst B, Busch R, Denzel T, Habe S, Winkler D et al. TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol 2010; 28: 4473–4479.

    PubMed  Google Scholar 

  91. Sorror ML, Storer BE, Sandmaier BM, Maris M, Shizuru J, Maziarz R et al. Five-year follow-up of patients with advanced chronic lymphocytic leukemia treated with allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. J Clin Oncol 2008; 26: 4912–4920.

    PubMed  PubMed Central  Google Scholar 

  92. Malek S . Clinical utility of prognostic markers in chronic lymphocytic leukemia. ASCO Education Book 2010 [review] 263–267.

  93. Bullrich F, Rasio D, Kitada S, Starostik P, Kipps T, Keating M et al. ATM mutations in B-cell chronic lymphocytic leukemia. Cancer Res 1999; 59: 24–27.

    CAS  PubMed  Google Scholar 

  94. Schaffner C, Stilgenbauer S, Rappold GA, Dohner H, Lichter P . Somatic ATM mutations indicate a pathogenic role of ATM in B-cell chronic lymphocytic leukemia. Blood 1999; 94: 748–753.

    CAS  PubMed  Google Scholar 

  95. Stankovic T, Weber P, Stewart G, Bedenham T, Murray J, Byrd PJ et al. Inactivation of ataxia telangiectasia mutated gene in B-cell chronic lymphocytic leukaemia. Lancet 1999; 353: 26–29.

    CAS  PubMed  Google Scholar 

  96. Austen B, Skowronska A, Baker C, Powell JE, Gardiner A, Oscier D et al. Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J Clin Oncol 2007; 25: 5448–5457.

    CAS  PubMed  Google Scholar 

  97. Ouillette P, Li J, Shaknovich R, Li Y, Melnick A, Shedden K et al. Incidence and clinical implications of ATM aberrations in chronic lymphocytic leukemia. Genes Chromosomes Cancer 2012, (in press).

  98. Austen B, Powell JE, Alvi A, Edwards I, Hooper L, Starczynski J et al. Mutations in the ATM gene lead to impaired overall and treatment-free survival that is independent of IGVH mutation status in patients with B-CLL. Blood 2005; 106: 3175–3182.

    CAS  PubMed  Google Scholar 

  99. Cejkova S, Rocnova L, Potesil D, Smardova J, Novakova V, Chumchalova J et al. Presence of heterozygous ATM deletion may not be critical in the primary response of chronic lymphocytic leukemia cells to fludarabine. Eur J Haematol 2009; 82: 133–142.

    CAS  PubMed  Google Scholar 

  100. Lozanski G, Ruppert AS, Heerem NA, Lozanski A, Luca DM, Gordon A et al. Variations of the ATM gene in chronic lymphocytic leukemia patients lack substantial impact on progression-free survival and overall survival: a Cancer and Leukemia Group B Study. Leuk Lymphoma 2012; 53: 1743–1748.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Balatti V, Bottoni A, Palamarchuk A, Alder H, Rassenti LZ, Kipps TJ et al. NOTCH1 mutations in CLL associated with trisomy 12. Blood 2012; 119: 329–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Rossi D, Rasi S, Fabbri G, Spina V, Fangazio M, Forconi F et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 2012; 119: 521–529.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Rossi D, Bruscaggin A, Spina V, Rasi S, Khiabanian H, Messina M et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 2011; 118: 6904–6908.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Brown JR, Levine RL, Thompson C, Basile G, Gilliland DG, Freedman AS . Systematic genomic screen for tyrosine kinase mutations in CLL. Leukemia 2008; 22: 1966–1969.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 2011; 470: 115–119.

    CAS  PubMed  Google Scholar 

  106. Gahrton G, Robert KH, Friberg K, Zech L, Bird AG . Nonrandom chromosomal aberrations in chronic lymphocytic leukemia revealed by polyclonal B-cell-mitogen stimulation. Blood 1980; 56: 640–647.

    CAS  PubMed  Google Scholar 

  107. Juliusson G, Oscier DG, Fitchett M, Ross FM, Stockdill G, Mackie MJ et al. Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N Engl J Med 1990; 323: 720–724.

    CAS  PubMed  Google Scholar 

  108. Peterson LC, Lindquist LL, Church S, Kay NE . Frequent clonal abnormalities of chromosome band 13q14 in B-cell chronic lymphocytic leukemia: multiple clones, subclones, and nonclonal alterations in 82 midwestern patients. Genes Chromosomes Cancer 1992; 4: 273–280.

    CAS  PubMed  Google Scholar 

  109. Dohner H, Stilgenbauer S, Fischer K, Bentz M, Lichter P . Cytogenetic and molecular cytogenetic analysis of B cell chronic lymphocytic leukemia: specific chromosome aberrations identify prognostic subgroups of patients and point to loci of candidate genes. Leukemia 1997; 11: S19–S24.

    PubMed  Google Scholar 

  110. Dicker F, Schnittger S, Haferlach T, Kern W, Schoch C . Immunostimulatory oligonucleotide-induced metaphase cytogenetics detect chromosomal aberrations in 80% of CLL patients: A study of 132 CLL cases with correlation to FISH, IgVH status, and CD38 expression. Blood 2006; 108: 3152–3160.

    CAS  PubMed  Google Scholar 

  111. Put N, Konings P, Rack K, Jamar M, Van Roy N, Libouton JM et al. Improved detection of chromosomal abnormalities in chronic lymphocytic leukemia by conventional cytogenetics using CpG oligonucleotide and interleukin-2 stimulation: a Belgian multicentric study. Genes Chromosomes Cancer 2009; 48: 843–853.

    CAS  PubMed  Google Scholar 

  112. Mayr C, Speicher MR, Kofler DM, Buhmann R, Strehl J, Busch R et al. Chromosomal translocations are associated with poor prognosis in chronic lymphocytic leukemia. Blood 2006; 107: 742–751.

    CAS  PubMed  Google Scholar 

  113. Heerema NA, Byrd JC, Dal Cin PS, Dell’ Aquila ML, Koduru PR, Aviram A et al. Stimulation of chronic lymphocytic leukemia cells with CpG oligodeoxynucleotide gives consistent karyotypic results among laboratories: a CLL Research Consortium (CRC) Study. Cancer Genet Cytogenet 2010; 203: 134–140.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Muthusamy N, Breidenbach H, Andritsos L, Flynn J, Jones J, Ramanunni A et al. Enhanced detection of chromosomal abnormalities in chronic lymphocytic leukemia by conventional cytogenetics using CpG oligonucleotide in combination with pokeweed mitogen and phorbol myristate acetate. Cancer Genet 2011; 204: 77–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Huh YO, Schweighofer CD, Ketterling RP, Knudson RA, Vega F, Kim JE et al. Chronic lymphocytic leukemia with t(14;19)(q32;q13) is characterized by atypical morphologic and immunophenotypic features and distinctive genetic features. Am J Clin Pathol 2011; 135: 686–696.

    PubMed  Google Scholar 

  116. Martin-Subero JI, Ibbotson R, Klapper W, Michaux L, Callet-Bauchu E, Berger F et al. A comprehensive genetic and histopathologic analysis identifies two subgroups of B-cell malignancies carrying a t(14;19)(q32;q13) or variant BCL3-translocation. Leukemia 2007; 21: 1532–1544.

    CAS  PubMed  Google Scholar 

  117. Ueshima Y, Bird ML, Vardiman JW, Rowley JDA . 14;19 translocation in B-cell chronic lymphocytic leukemia: a new recurring chromosome aberration. Int J Cancer 1985; 36: 287–290.

    CAS  PubMed  Google Scholar 

  118. Nguyen-Khac F, Chapiro E, Lesty C, Grelier A, Luquet I, Radford-Weiss I et al. Specific chromosomal IG translocations have different prognoses in chronic lymphocytic leukemia. Am J Blood Res 2011; 1: 13–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Van Den Neste E, Robin V, Francart J, Hagemeijer A, Stul M, Vandenberghe P et al. Chromosomal translocations independently predict treatment failure, treatment-free survival and overall survival in B-cell chronic lymphocytic leukemia patients treated with cladribine. Leukemia 2007; 21: 1715–1722.

    CAS  PubMed  Google Scholar 

  120. Rigolin GM, Cibien F, Martinelli S, Formigaro L, Rizzotto L, Tammiso E et al. Chromosome aberrations detected by conventional karyotyping using novel mitogens in chronic lymphocytic leukemia with ‘normal’ FISH: correlations with clinicobiologic parameters. Blood 2012; 119: 2310–2313.

    CAS  PubMed  Google Scholar 

  121. Visone R, Rassenti LZ, Veronese A, Taccioli C, Costinean S, Aguda BD et al. Karyotype-specific microRNA signature in chronic lymphocytic leukemia. Blood 2009; 114: 3872–3879.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kanduri M, Cahill N, Göransson H, Enström C, Ryan F, Isaksson A et al. Differential genome-wide array-based methylation profiles in prognostic subsets of chronic lymphocytic leukemia. Blood 2010; 115: 296–305.

    CAS  PubMed  Google Scholar 

  123. Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 2011; 117: 6287–6296.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ et al. The phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 2011; 118: 3603–3612.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Ponader S, Chen SS, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 2012; 119: 1182–1189.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Institutes of Health through R01 CA136537-01 (SM), the Translational Research Program of the Leukemia and Lymphoma Society of America (SM), the Scholars in Clinical Research Program of the Leukemia and Lymphoma Society of America (SM) and a CLL collaborative grant from the Lymphoma Research Foundation. This research is supported (in part) by the National Institutes of Health through the University of Michigan’s Cancer Center Support Grant (5 P30 CA46592) and Oncology Research Training Grant (T32 CA 009357-30). I am grateful for services provided by the microarray core of the University of Michigan Comprehensive Cancer Center.

Author contributions: Sami N Malek wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S N Malek.

Ethics declarations

Competing interests

Dr Malek’s work has been funded by the NIH, the Leukemia and Lymphoma Society of America and the Lymphoma Research Foundation. He has received honoraria from Roche and Teva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malek, S. The biology and clinical significance of acquired genomic copy number aberrations and recurrent gene mutations in chronic lymphocytic leukemia. Oncogene 32, 2805–2817 (2013). https://doi.org/10.1038/onc.2012.411

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.411

Keywords

This article is cited by

Search

Quick links