Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TP53INP1 decreases pancreatic cancer cell migration by regulating SPARC expression

Abstract

Tumor protein 53 induced nuclear protein 1 (TP53INP1) is a p53 target gene that induces cell growth arrest and apoptosis by modulating p53 transcriptional activity. TP53INP1 interacts physically with p53 and is a major player in the p53-driven oxidative stress response. Previously, we demonstrated that TP53INP1 is downregulated in an early stage of pancreatic cancerogenesis and when restored is able to suppress pancreatic tumor development. TP53INP1 downregulation in pancreas is associated with an oncogenic microRNA miR-155. In the present work, we studied the effects of TP53INP1 on cell migration. We found that TP53INP1 inactivation correlates with increased cell migration both in vivo and in vitro. The impact of TP53INP1 expression on cell migration was studied in different cellular contexts: mouse embryonic fibroblast and different pancreatic cancer cell lines. Its expression decreases cell migration by the transcriptional downregulation of secreted protein acidic and rich in cysteine (SPARC). SPARC is a matrix cellular protein, which governs diverse cellular functions and has a pivotal role in regulating cell-matrix interactions, cellular proliferation and migration. SPARC was also showed to be upregulated in normal pancreas and in pancreatic intraepithelial neoplasia lesions in a pancreatic adenocarcinoma mouse model only in the TP53INP1-deficient animals. This novel TP53INP1 activity on the regulation of SPARC expression could explain in part its tumor suppressor function in pancreatic adenocarcinoma by modulating cellular spreading during the metastatic process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

CM:

Culture Medium

CTL:

Control

ECM:

Extracellular Matrix

FN1:

fibronectin-1

GFP:

Green Fluorescent Protein

IHC:

immunohistochemistry

MEF:

Mouse Embryonic Fibroblasts

PDAC:

Pancreatic Ductal Adenocarcinoma

PanIN:

Pancreatic Intraepithelial Neoplasia

Pdx1:

Pancreatic and duodenal homeobox 1

PonA:

Ponasterone A

PLL:

Polylysine

TCL:

Total Cellular Extract

Vn:

vitronectin

References

  • Arnold S, Mira E, Muneer S, Korpanty G, Beck AW, Holloway SE et al. (2008). Forced expression of MMP9 rescues the loss of angiogenesis and abrogates metastasis of pancreatic tumors triggered by the absence of host SPARC. Exp Biol Med (Maywood) 233: 860–873.

    Article  CAS  Google Scholar 

  • Basu A, Kligman LH, Samulewicz SJ, Howe CC . (2001). Impaired wound healing in mice deficient in a matricellular protein SPARC (osteonectin, BM-40). BMC Cell Biol 2: 15.

    Article  CAS  Google Scholar 

  • Baumgart M, Heinmoller E, Horstmann O, Becker H, Ghadimi BM . (2005). The genetic basis of sporadic pancreatic cancer. Cell Oncol 27: 3–13.

    CAS  Google Scholar 

  • Bellahcene A, Castronovo V . (1995). Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer. Am J Pathol 146: 95–100.

    CAS  Google Scholar 

  • Bradshaw AD, Puolakkainen P, Dasgupta J, Davidson JM, Wight TN, Helene Sage E . (2003). SPARC-null mice display abnormalities in the dermis characterized by decreased collagen fibril diameter and reduced tensile strength. J Invest Dermatol 120: 949–955.

    Article  CAS  Google Scholar 

  • Bradshaw AD, Reed MJ, Sage EH . (2002). SPARC-null mice exhibit accelerated cutaneous wound closure. J Histochem Cytochem 50: 1–10.

    Article  CAS  Google Scholar 

  • Bradshaw AD, Sage EH . (2001). SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J Clin Invest 107: 1049–1054.

    Article  CAS  Google Scholar 

  • Brekken RA, Puolakkainen P, Graves DC, Workman G, Lubkin SR, Sage EH . (2003). Enhanced growth of tumors in SPARC null mice is associated with changes in the ECM. J Clin Invest 111: 487–495.

    Article  CAS  Google Scholar 

  • Brune K, Hong SM, Li A, Yachida S, Abe T, Griffith M et al. (2008). Genetic and epigenetic alterations of familial pancreatic cancers. Cancer Epidemiol Biomarkers Prev 17: 3536–3542.

    Article  CAS  Google Scholar 

  • Chen G, Tian X, Liu Z, Zhou S, Schmidt B, Henne-Bruns D et al. (2010). Inhibition of endogenous SPARC enhances pancreatic cancer cell growth: modulation by FGFR1-III isoform expression. Br J Cancer 102: 188–195.

    Article  CAS  Google Scholar 

  • Ford R, Wang G, Jannati P, Adler D, Racanelli P, Higgins PJ et al. (1993). Modulation of SPARC expression during butyrate-induced terminal differentiation of cultured human keratinocytes: regulation via a TGF-beta-dependent pathway. Exp Cell Res 206: 261–275.

    Article  CAS  Google Scholar 

  • Framson PE, Sage EH . (2004). SPARC and tumor growth: where the seed meets the soil? J Cell Biochem 92: 679–690.

    Article  CAS  Google Scholar 

  • Gironella M, Seux M, Xie MJ, Cano C, Tomasini R, Gommeaux J et al. (2007). Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci USA 104: 16170–16175.

    Article  CAS  Google Scholar 

  • Gommeaux J, Cano C, Garcia S, Gironella M, Pietri S, Culcasi M et al. (2007). Colitis and colitis-associated cancer are exacerbated in mice deficient for tumor protein 53-induced nuclear protein 1. Mol Cell Biol 27: 2215–2228.

    Article  CAS  Google Scholar 

  • Guweidhi A, Kleeff J, Adwan H, Giese NA, Wente MN, Giese T et al. (2005). Osteonectin influences growth and invasion of pancreatic cancer cells. Ann Surg 242: 224–234.

    Article  Google Scholar 

  • Hershko T, Chaussepied M, Oren M, Ginsberg D . (2005). Novel link between E2F and p53: proapoptotic cofactors of p53 are transcriptionally upregulated by E2F. Cell Death Differ 12: 377–383.

    Article  CAS  Google Scholar 

  • Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA et al. (2003). Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4: 437–450.

    Article  CAS  Google Scholar 

  • Hunzelmann N, Hafner M, Anders S, Krieg T, Nischt R . (1998). BM-40 (osteonectin, SPARC) is expressed both in the epidermal and in the dermal compartment of adult human skin. J Invest Dermatol 110: 122–126.

    Article  CAS  Google Scholar 

  • Infante JR, Matsubayashi H, Sato N, Tonascia J, Klein AP, Riall TA et al. (2007). Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J Clin Oncol 25: 319–325.

    Article  Google Scholar 

  • Ito Y, Motoo Y, Yoshida H, Iovanna JL, Takamura Y, Miya A et al. (2006). Decreased expression of tumor protein p53-induced nuclear protein 1 (TP53INP1) in breast carcinoma. Anticancer Res 26: 4391–4395.

    CAS  Google Scholar 

  • Jiang PH, Motoo Y, Garcia S, Iovanna JL, Pebusque MJ, Sawabu N . (2006). Down-expression of tumor protein p53-induced nuclear protein 1 in human gastric cancer. World J Gastroenterol 12: 691–696.

    Article  CAS  Google Scholar 

  • Loging WT, Lal A, Siu IM, Loney TL, Wikstrand CJ, Marra MA et al. (2000). Identifying potential tumor markers and antigens by database mining and rapid expression screening. Genome Res 10: 1393–1402.

    Article  CAS  Google Scholar 

  • Lomberk G, Mathison AJ, Grzenda A, Urrutia R . (2008). The sunset of somatic genetics and the dawn of epigenetics: a new frontier in pancreatic cancer research. Curr Opin Gastroenterol 24: 597–602.

    Article  Google Scholar 

  • Martin P . (1997). Wound healing—aiming for perfect skin regeneration. Science 276: 75–81.

    Article  CAS  Google Scholar 

  • Massi D, Franchi A, Borgognoni L, Reali UM, Santucci M . (1999). Osteonectin expression correlates with clinical outcome in thin cutaneous malignant melanomas. Hum Pathol 30: 339–344.

    Article  CAS  Google Scholar 

  • Murphy-Ullrich JE, Lane TF, Pallero MA, Sage EH . (1995). SPARC mediates focal adhesion disassembly in endothelial cells through a follistatin-like region and the Ca(2+)-binding EF-hand. J Cell Biochem 57: 341–350.

    Article  CAS  Google Scholar 

  • Ogawa K, Asamoto M, Suzuki S, Tsujimura K, Shirai T . (2005). Downregulation of apoptosis revealed by laser microdissection and cDNA microarray analysis of related genes in rat liver preneoplastic lesions. Med Mol Morphol 38: 23–29.

    Article  CAS  Google Scholar 

  • Porte H, Chastre E, Prevot S, Nordlinger B, Empereur S, Basset P et al. (1995). Neoplastic progression of human colorectal cancer is associated with overexpression of the stromelysin-3 and BM-40/SPARC genes. Int J Cancer 64: 70–75.

    Article  CAS  Google Scholar 

  • Porte H, Triboulet JP, Kotelevets L, Carrat F, Prevot S, Nordlinger B et al. (1998). Overexpression of stromelysin-3, BM-40/SPARC, and MET genes in human esophageal carcinoma: implications for prognosis. Clin Cancer Res 4: 1375–1382.

    CAS  Google Scholar 

  • Porter PL, Sage EH, Lane TF, Funk SE, Gown AM . (1995). Distribution of SPARC in normal and neoplastic human tissue. J Histochem Cytochem 43: 791–800.

    Article  CAS  Google Scholar 

  • Puolakkainen PA, Brekken RA, Muneer S, Sage EH . (2004). Enhanced growth of pancreatic tumors in SPARC-null mice is associated with decreased deposition of extracellular matrix and reduced tumor cell apoptosis. Mol Cancer Res 2: 215–224.

    CAS  Google Scholar 

  • Reed MJ, Puolakkainen P, Lane TF, Dickerson D, Bornstein P, Sage EH . (1993). Differential expression of SPARC and thrombospondin 1 in wound repair: immunolocalization and in situ hybridization. J Histochem Cytochem 41: 1467–1477.

    Article  CAS  Google Scholar 

  • Reed MJ, Vernon RB, Abrass IB, Sage EH . (1994). TGF-beta 1 induces the expression of type I collagen and SPARC, and enhances contraction of collagen gels, by fibroblasts from young and aged donors. J Cell Physiol 158: 169–179.

    Article  CAS  Google Scholar 

  • Rempel SA, Golembieski WA, Fisher JL, Maile M, Nakeff A . (2001). SPARC modulates cell growth, attachment and migration of U87 glioma cells on brain extracellular matrix proteins. J Neurooncol 53: 149–160.

    Article  CAS  Google Scholar 

  • Rempel SA, Golembieski WA, Ge S, Lemke N, Elisevich K, Mikkelsen T et al. (1998). SPARC: a signal of astrocytic neoplastic transformation and reactive response in human primary and xenograft gliomas. J Neuropathol Exp Neurol 57: 1112–1121.

    Article  CAS  Google Scholar 

  • Robert G, Gaggioli C, Bailet O, Chavey C, Abbe P, Aberdam E et al. (2006). SPARC represses E-cadherin and induces mesenchymal transition during melanoma development. Cancer Res 66: 7516–7523.

    Article  CAS  Google Scholar 

  • Roger L, Gadea G, Roux P . (2006). Control of cell migration: a tumour suppressor function for p53? Biol Cell 98: 141–152.

    Article  CAS  Google Scholar 

  • Ryu B, Jones J, Hollingsworth MA, Hruban RH, Kern SE . (2001). Invasion-specific genes in malignancy: serial analysis of gene expression comparisons of primary and passaged cancers. Cancer Res 61: 1833–1838.

    CAS  Google Scholar 

  • Sage EH, Bassuk JA, Yost JC, Folkman MJ, Lane TF . (1995). Inhibition of endothelial cell proliferation by SPARC is mediated through a Ca(2+)-binding EF-hand sequence. J Cell Biochem 57: 127–140.

    Article  CAS  Google Scholar 

  • Sage EH, Reed M, Funk SE, Truong T, Steadele M, Puolakkainen P et al. (2003). Cleavage of the matricellular protein SPARC by matrix metalloproteinase 3 produces polypeptides that influence angiogenesis. J Biol Chem 278: 37849–37857.

    Article  CAS  Google Scholar 

  • Sage H, Vernon RB, Decker J, Funk S, Iruela-Arispe ML . (1989). Distribution of the calcium-binding protein SPARC in tissues of embryonic and adult mice. J Histochem Cytochem 37: 819–829.

    Article  CAS  Google Scholar 

  • Sato N, Fukushima N, Maehara N, Matsubayashi H, Koopmann J, Su GH et al. (2003). SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor-stromal interactions. Oncogene 22: 5021–5030.

    Article  CAS  Google Scholar 

  • Schiemann BJ, Neil JR, Schiemann WP . (2003). SPARC inhibits epithelial cell proliferation in part through stimulation of the transforming growth factor-beta-signaling system. Mol Biol Cell 14: 3977–3988.

    Article  CAS  Google Scholar 

  • Seno T, Harada H, Kohno S, Teraoka M, Inoue A, Ohnishi T . (2009). Downregulation of SPARC expression inhibits cell migration and invasion in malignant gliomas. Int J Oncol 34: 707–715.

    Article  CAS  Google Scholar 

  • Singer AJ, Clark RA . (1999). Cutaneous wound healing. N Engl J Med 341: 738–746.

    Article  CAS  Google Scholar 

  • Suzuki S, Asamoto M, Tsujimura K, Shirai T . (2004). Specific differences in gene expression profile revealed by cDNA microarray analysis of glutathione S-transferase placental form (GST-P) immunohistochemically positive rat liver foci and surrounding tissue. Carcinogenesis 25: 439–443.

    Article  CAS  Google Scholar 

  • Tomasini R, Samir AA, Carrier A, Isnardon D, Cecchinelli B, Soddu S et al. (2003). TP53INP1s and homeodomain-interacting protein kinase-2 (HIPK2) are partners in regulating p53 activity. J Biol Chem 278: 37722–37729.

    Article  CAS  Google Scholar 

  • Tomasini R, Samir AA, Pebusque MJ, Calvo EL, Totaro S, Dagorn JC et al. (2002). P53-dependent expression of the stress-induced protein (SIP). Eur J Cell Biol 81: 294–301.

    Article  CAS  Google Scholar 

  • Tomasini R, Samir AA, Vaccaro MI, Pebusque MJ, Dagorn JC, Iovanna JL et al. (2001). Molecular and functional characterization of the stress-induced protein (SIP) gene and its two transcripts generated by alternative splicing. SIP induced by stress and promotes cell death. J Biol Chem 276: 44185–44192.

    Article  CAS  Google Scholar 

  • Vasseur S, Hoffmeister A, Garcia-Montero A, Barthet M, Saint-Michel L, Berthezene P et al. (2003). Mice with targeted disruption of p8 gene show increased sensitivity to lipopolysaccharide and DNA microarray analysis of livers reveals an aberrant gene expression response. BMC Gastroenterol 3: 25.

    Article  Google Scholar 

  • Verrecchia F, Mauviel A . (2007). Transforming growth factor-beta and fibrosis. World J Gastroenterol 13: 3056–3062.

    Article  CAS  Google Scholar 

  • Wrana JL, Overall CM, Sodek J . (1991). Regulation of the expression of a secreted acidic protein rich in cysteine (SPARC) in human fibroblasts by transforming growth factor beta. Comparison of transcriptional and post-transcriptional control with fibronectin and type I collagen. Eur J Biochem 197: 519–528.

    Article  CAS  Google Scholar 

  • Yamanaka M, Kanda K, Li NC, Fukumori T, Oka N, Kanayama HO et al. (2001). Analysis of the gene expression of SPARC and its prognostic value for bladder cancer. J Urol 166: 2495–2499.

    Article  CAS  Google Scholar 

  • Yoshida K, Liu H, Miki Y . (2006). Protein kinase C delta regulates Ser46 phosphorylation of p53 tumor suppressor in the apoptotic response to DNA damage. J Biol Chem 281: 5734–5740.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Institut National de la Santé et de la Recherche Médicale (INSERM) and Centre National de la Recherche Scientifique and grants from the Institut National du Cancer, La Ligue Nationale Contre le Cancer, Association pour la Recherche sur le Cancer and the Agence Nationale de la Recherche. M Seux was supported by Association pour la Recherche sur le Cancer and S Peuget by the Club Franiçais du Pancréas and Ministèère de la Recherche et de la Technologie. Authors acknowledge Tony George JACOB and Antoine Baud for critically reading the manuscript and helpful comments respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N J Dusetti.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seux, M., Peuget, S., Montero, M. et al. TP53INP1 decreases pancreatic cancer cell migration by regulating SPARC expression. Oncogene 30, 3049–3061 (2011). https://doi.org/10.1038/onc.2011.25

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.25

Keywords

This article is cited by

Search

Quick links