Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

FGF5 as an oncogenic factor in human glioblastoma multiforme: autocrine and paracrine activities

Abstract

Fibroblast growth factor 5 (FGF5) is widely expressed in embryonic but scarcely in adult tissues. Here we report simultaneous overexpression of FGF5 and its predominant high-affinity receptor (FGFR1 IIIc) in astrocytic brain tumour specimens (N=49) and cell cultures (N=49). The levels of both ligand and receptor increased with enhanced malignancy in vivo and in vitro. Furthermore, secreted FGF5 protein was generally present in the supernatants of glioblastoma (GBM) cells. siRNA-mediated FGF5 downmodulation reduced moderately but significantly GBM cell proliferation while recombinant FGF5 (rFGF5) increased this parameter preferentially in cell lines with low endogenous expression levels. Apoptosis induction by prolonged serum starvation was significantly prevented by rFGF5. Moreover, tumour cell migration was distinctly stimulated by rFGF5 but attenuated by FGF5 siRNA. Blockade of FGFR1-mediated signals by pharmacological FGFR inhibitors or a dominant-negative FGFR1 IIIc protein inhibited GBM cell proliferation and/or induced apoptotic cell death. Moreover, rFGF5 and supernatants of highly FGF5-positive GBM cell lines specifically stimulated proliferation, migration and tube formation of human umbilical vein endothelial cells. In summary, we demonstrate for the first time that FGF5 contributes to the malignant progression of human astrocytic brain tumours by both autocrine and paracrine effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Antoine M, Wirz W, Tag CG, Mavituna M, Emans N, Korff T et al. (2005). Expression pattern of fibroblast growth factors (FGFs), their receptors and antagonists in primary endothelial cells and vascular smooth muscle cells. Growth Factors 23: 87–95.

    Article  CAS  Google Scholar 

  • Bates B, Hardin J, Zhan X, Drickamer K, Goldfarb M . (1991). Biosynthesis of human fibroblast growth factor-5. Mol Cell Biol 11: 1840–1845.

    Article  CAS  Google Scholar 

  • Berger W, Setinek U, Hollaus P, Zidek T, Steiner E, Elbling L et al. (2005). Multidrug resistance markers P-glycoprotein, multidrug resistance protein 1, and lung resistance protein in non-small cell lung cancer: prognostic implications. J Cancer Res Clin Oncol 131: 355–363.

    Article  CAS  Google Scholar 

  • Berger W, Setinek U, Mohr T, Kindas-Mugge I, Vetterlein M, Dekan G et al. (1999). Evidence for a role of FGF-2 and FGF receptors in the proliferation of non-small cell lung cancer cells. Int J Cancer 83: 415–423.

    Article  CAS  Google Scholar 

  • Brachner A, Sasgary S, Pirker C, Rodgarkia C, Mikula M, Mikulits W et al. (2006). Telomerase- and alternative telomere lengthening-independent telomere stabilization in a metastasis-derived human non-small cell lung cancer cell line: effect of ectopic hTERT. Cancer Res 66: 3584–3592.

    Article  CAS  Google Scholar 

  • Carter TA, Wodicka LM, Shah NP, Velasco AM, Fabian MA, Treiber DK et al. (2005). Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc Natl Acad Sci USA 102: 11011–11016.

    Article  CAS  Google Scholar 

  • Cavallaro U, Niedermeyer J, Fuxa M, Christofori G . (2001). N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nat Cell Biol 3: 650–657.

    Article  CAS  Google Scholar 

  • Davies MA, Lu Y, Sano T, Fang X, Tang P, LaPushin R et al. (1998). Adenoviral transgene expression of MMAC/PTEN in human glioma cells inhibits Akt activation and induces anoikis. Cancer Res 58: 5285–5290.

    CAS  PubMed  Google Scholar 

  • Engebraaten O, Bjerkvig R, Pedersen PH, Laerum OD . (1993). Effects of EGF, bFGF, NGF and PDGF(bb) on cell proliferative, migratory and invasive capacities of human brain-tumour biopsies in vitro. Int J Cancer 53: 209–214.

    Article  CAS  Google Scholar 

  • Eswarakumar VP, Lax I, Schlessinger J . (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16: 139–149.

    Article  CAS  Google Scholar 

  • Galzie Z, Kinsella AR, Smith JA . (1997). Fibroblast growth factors and their receptors. Biochem Cell Biol 75: 669–685.

    Article  CAS  Google Scholar 

  • Gomez-Pinilla F, Cotman CW . (1993). Distribution of fibroblast growth factor 5 mRNA in the rat brain: an in situ hybridization study. Brain Res 606: 79–86.

    Article  CAS  Google Scholar 

  • Grose R, Dickson C . (2005). Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev 16: 179–186.

    Article  CAS  Google Scholar 

  • Hanada K, Perry-Lalley DM, Ohnmacht GA, Bettinotti MP, Yang JC . (2001). Identification of fibroblast growth factor-5 as an overexpressed antigen in multiple human adenocarcinomas. Cancer Res 61: 5511–5516.

    CAS  PubMed  Google Scholar 

  • Haub O, Drucker B, Goldfarb M . (1990). Expression of the murine fibroblast growth factor 5 gene in the adult central nervous system. Proc Natl Acad Sci USA 87: 8022–8026.

    Article  CAS  Google Scholar 

  • Haub O, Goldfarb M . (1991). Expression of the fibroblast growth factor-5 gene in the mouse embryo. Development 112: 397–406.

    CAS  PubMed  Google Scholar 

  • Hebert JM, Rosenquist T, Gotz J, Martin GR . (1994). FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell 78: 1017–1025.

    Article  CAS  Google Scholar 

  • Heffeter P, Jakupec MA, Korner W, Wild S, von Keyserlingk NG, Elbling L et al. (2006). Anticancer activity of the lanthanum compound [tris(1, 10-phenanthroline)lanthanum(III)]trithiocyanate (KP772; FFC24). Biochem Pharmacol 71: 426–440.

    Article  CAS  Google Scholar 

  • Hughes RA, Sendtner M, Goldfarb M, Lindholm D, Thoenen H . (1993). Evidence that fibroblast growth factor 5 is a major muscle-derived survival factor for cultured spinal motoneurons. Neuron 10: 369–377.

    Article  CAS  Google Scholar 

  • Jaffe EA, Nachman RL, Becker CG, Minick CR . (1973). Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52: 2745–2756.

    Article  CAS  Google Scholar 

  • Jensen RL . (1998). Growth factor-mediated angiogenesis in the malignant progression of glial tumors: a review. Surg Neurol 49: 189–195.

    Article  CAS  Google Scholar 

  • Joy A, Moffett J, Neary K, Mordechai E, Stachowiak EK, Coons S et al. (1997). Nuclear accumulation of FGF-2 is associated with proliferation of human astrocytes and glioma cells. Oncogene 14: 171–183.

    Article  CAS  Google Scholar 

  • Kargiotis O, Rao JS, Kyritsis AP . (2006). Mechanisms of angiogenesis in gliomas. J Neurooncol 78: 281–293.

    Article  CAS  Google Scholar 

  • Kornmann M, Ishiwata T, Beger HG, Korc M . (1997). Fibroblast growth factor-5 stimulates mitogenic signaling and is overexpressed in human pancreatic cancer: evidence for autocrine and paracrine actions. Oncogene 15: 1417–1424.

    Article  CAS  Google Scholar 

  • Kornmann M, Lopez ME, Beger HG, Korc M . (2001). Expression of the IIIc variant of FGF receptor-1 confers mitogenic responsiveness to heparin and FGF-5 in TAKA-1 pancreatic ductal cells. Int J Pancreatol 29: 85–92.

    Article  CAS  Google Scholar 

  • Lindholm D, Harikka J, da Penha Berzaghi M, Castren E, Tzimagiorgis G, Hughes RA et al. (1994). Fibroblast growth factor-5 promotes differentiation of cultured rat septal cholinergic and raphe serotonergic neurons: comparison with the effects of neurotrophins. Eur J Neurosci 6: 244–252.

    Article  CAS  Google Scholar 

  • McKeehan WL, Wang F, Kan M . (1998). The heparan sulfate-fibroblast growth factor family: diversity of structure and function. Prog Nucleic Acid Res Mol Biol 59: 135–176.

    Article  CAS  Google Scholar 

  • Morrison RS, Yamaguchi F, Bruner JM, Tang M, McKeehan W, Berger MS . (1994a). Fibroblast growth factor receptor gene expression and immunoreactivity are elevated in human glioblastoma multiforme. Cancer Res 54: 2794–2799.

    CAS  PubMed  Google Scholar 

  • Morrison RS, Yamaguchi F, Saya H, Bruner JM, Yahanda AM, Donehower LA et al. (1994b). Basic fibroblast growth factor and fibroblast growth factor receptor I are implicated in the growth of human astrocytomas. J Neurooncol 18: 207–216.

    Article  CAS  Google Scholar 

  • Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F et al. (1996). Receptor specificity of the fibroblast growth factor family. J Biol Chem 271: 15292–15297.

    Article  CAS  Google Scholar 

  • Ozawa K, Suzuki S, Asada M, Tomooka Y, Li AJ, Yoneda A et al. (1998). An alternatively spliced fibroblast growth factor (FGF)-5 mRNA is abundant in brain and translates into a partial agonist/antagonist for FGF-5 neurotrophic activity. J Biol Chem 273: 29262–29271.

    Article  CAS  Google Scholar 

  • Panek RL, Lu GH, Dahring TK, Batley BL, Connolly C, Hamby JM et al. (1998). In vitro biological characterization and antiangiogenic effects of PD 166866, a selective inhibitor of the FGF-1 receptor tyrosine kinase. J Pharmacol Exp Ther 286: 569–577.

    CAS  PubMed  Google Scholar 

  • Pelton TA, Sharma S, Schulz TC, Rathjen J, Rathjen PD . (2002). Transient pluripotent cell populations during primitive ectoderm formation: correlation of in vivo and in vitro pluripotent cell development. J Cell Sci 115: 329–339.

    CAS  PubMed  Google Scholar 

  • Puputti M, Tynninen O, Sihto H, Blom T, Maenpaa H, Isola J et al. (2006). Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas. Mol Cancer Res 4: 927–934.

    Article  CAS  Google Scholar 

  • Reuss B, Dono R, Unsicker K . (2003). Functions of fibroblast growth factor (FGF)-2 and FGF-5 in astroglial differentiation and blood–brain barrier permeability: evidence from mouse mutants. J Neurosci 23: 6404–6412.

    Article  CAS  Google Scholar 

  • Reuss B, Hertel M, Werner S, Unsicker K . (2000). Fibroblast growth factors-5 and -9 distinctly regulate expression and function of the gap junction protein connexin 43 in cultured astroglial cells from different brain regions. Glia 30: 231–241.

    Article  CAS  Google Scholar 

  • Reuss B, von Bohlen und Halbach O . (2003). Fibroblast growth factors and their receptors in the central nervous system. Cell Tissue Res 313: 139–157.

    Article  CAS  Google Scholar 

  • Rix U, Hantschel O, Durnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV et al. (2007). Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib and dasatinib reveal novel kinase and non-kinase targets. Blood 110: 4055–4063.

    Article  CAS  Google Scholar 

  • Spiegl-Kreinecker S, Pirker C, Marosi C, Buchroithner J, Pichler J, Silye R et al. (2007). Dynamics of chemosensitivity and chromosomal instability in recurrent glioblastoma. Br J Cancer 96: 960–969.

    Article  CAS  Google Scholar 

  • Stachowiak MK, Maher PA, Joy A, Mordechai E, Stachowiak EK . (1996). Nuclear localization of functional FGF receptor 1 in human astrocytes suggests a novel mechanism for growth factor action. Brain Res Mol Brain Res 38: 161–165.

    Article  CAS  Google Scholar 

  • Steiner E, Holzmann K, Pirker C, Elbling L, Micksche M, Sutterluty H et al. (2006). The major vault protein is responsive to and interferes with interferon-gamma-mediated STAT1 signals. J Cell Sci 119: 459–469.

    Article  CAS  Google Scholar 

  • Sundberg JP, Rourk MH, Boggess D, Hogan ME, Sundberg BA, Bertolino AP . (1997). Angora mouse mutation: altered hair cycle, follicular dystrophy, phenotypic maintenance of skin grafts, and changes in keratin expression. Vet Pathol 34: 171–179.

    Article  CAS  Google Scholar 

  • Suzuki S, Kato T, Takimoto H, Masui S, Oshima H, Ozawa K et al. (1998). Localization of rat FGF-5 protein in skin macrophage-like cells and FGF-5S protein in hair follicle: possible involvement of two Fgf-5 gene products in hair growth cycle regulation. J Invest Dermatol 111: 963–972.

    Article  CAS  Google Scholar 

  • Suzuki S, Ota Y, Ozawa K, Imamura T . (2000). Dual-mode regulation of hair growth cycle by two Fgf-5 gene products. J Invest Dermatol 114: 456–463.

    Article  CAS  Google Scholar 

  • Taniguchi F, Harada T, Sakamoto Y, Yamauchi N, Yoshida S, Iwabe T et al. (2003). Activation of mitogen-activated protein kinase pathway by keratinocyte growth factor or fibroblast growth factor-10 promotes cell proliferation in human endometrial carcinoma cells. J Clin Endocrinol Metab 88: 773–780.

    Article  CAS  Google Scholar 

  • Todo T, Kondo T, Kirino T, Asai A, Adams EF, Nakamura S et al. (1998). Expression and growth stimulatory effect of fibroblast growth factor 9 in human brain tumors. Neurosurgery 43: 337–346.

    Article  CAS  Google Scholar 

  • Yamada SM, Yamada S, Hayashi Y, Takahashi H, Teramoto A, Matsumoto K . (2002). Fibroblast growth factor receptor (FGFR) 4 correlated with the malignancy of human astrocytomas. Neurol Res 24: 244–248.

    Article  CAS  Google Scholar 

  • Zhan X, Bates B, Hu XG, Goldfarb M . (1988). The human FGF-5 oncogene encodes a novel protein related to fibroblast growth factors. Mol Cell Biol 8: 3487–3495.

    Article  CAS  Google Scholar 

  • Zhang L, Kharbanda S, Hanfelt J, Kern FG . (1998). Both autocrine and paracrine effects of transfected acidic fibroblast growth factor are involved in the estrogen-independent and antiestrogen-resistant growth of MCF-7 breast cancer cells. Cancer Res 58: 352–361.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ninon Taylor, Paracelsus Medical University Salzburg, for the dnFGFR1-IIIc adenoviral construct and for reading the paper. Moreover, we are thankful to Vera Bachinger, Christian Balcarek, Maria Eisenbauer and Heidelinde Cantonati for skilful technical assistance as well as Stoffl Mayer and Hedwig Sutterlüty for discussion of the data.This study was supported by Austrian Science Fund FWF, project number P17630-B12, P19920-B12 (to WB) and the Jubiläumsfonds des Bürgermeisters der Bundeshauptstadt Wien, project number 2569 (to CM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Berger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allerstorfer, S., Sonvilla, G., Fischer, H. et al. FGF5 as an oncogenic factor in human glioblastoma multiforme: autocrine and paracrine activities. Oncogene 27, 4180–4190 (2008). https://doi.org/10.1038/onc.2008.61

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.61

Keywords

This article is cited by

Search

Quick links