Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular dynamics simulations of biomolecules

A Corrigendum to this article was published on 01 October 2002

Abstract

Molecular dynamics simulations are important tools for understanding the physical basis of the structure and function of biological macromolecules. The early view of proteins as relatively rigid structures has been replaced by a dynamic model in which the internal motions and resulting conformational changes play an essential role in their function. This review presents a brief description of the origin and early uses of biomolecular simulations. It then outlines some recent studies that illustrate the utility of such simulations and closes with a discussion of their ever-increasing potential for contributing to biology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conformational change in the functional cycle of GroEL obtained by simulation of a single subunit (see ref. 45).
Figure 2: Fluctuation of the width of the bottleneck in the main channel or 'gorge' of mouse acetylcholinesterase.
Figure 3: Folding simulations of a three-stranded β-sheet peptide.
Figure 4: The permeation of water through a model of aquaporin (blue) in a lipid bilayer membrane (head groups in yellow and hydrocarbon tails in green).

Similar content being viewed by others

References

  1. McCammon, J.A., Gelin, B.R. & Karplus, M. Dynamics of folded proteins. Nature 267, 585–590 (1977).

    Article  CAS  Google Scholar 

  2. Phillips, D.C. in Biomolecular Stereodynamics II (ed. Sarma, R.H.) 497 (Adenine Press, Guilderland, New York; 1981).

    Google Scholar 

  3. Linderstrom-Lang, K. Deuterium exchange between peptides and water. Chem. Soc. (London) 2, 1–20 (1955).

    Google Scholar 

  4. Feynman, R.P. Leighton, R.B. & Sands, M. in The Feynman Lectures in Physics Vol. I, 3–6 (Addison-Wesley, Reading; 1963).

    Google Scholar 

  5. Frauenfelder, H., Petsko, G.A. & Tsernoglou, D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 280, 558–563 (1979).

    Article  CAS  Google Scholar 

  6. Artymiuk, P.J. et al. Crystallographic studies of the dynamic properties of lysozyme. Nature 280, 563–568 (1979).

    Article  CAS  Google Scholar 

  7. Ichiye, T. & Karplus, M. Fluorescence depolarization of tryptophan residues in proteins: a molecular dynamics study. Biochemistry 22, 2884–2893 (1983).

    Article  CAS  Google Scholar 

  8. Dobson, C.M. & Karplus, M. Internal motion of proteins: Nuclear magnetic resonance measurements and dynamic simulations. Methods Enzymol. 131, 362–389 (1986).

    Article  CAS  Google Scholar 

  9. Smith, J., Cusack, S., Pezzeca, U., Brooks, B.R. & Karplus, M. Inelastic neutron scattering analysis of low frequency motion in proteins: A normal mode study of the bovine pancreatic trypsin inhibitor. J. Chem. Phys. 85, 3636–3654 (1986).

    Article  CAS  Google Scholar 

  10. Brünger, A.T., Brooks, C.L. III, & Karplus, M. Active site dynamics of ribonuclease. Proc. Natl. Acad. Sci. USA 82, 8458–8462 (1985).

    Article  Google Scholar 

  11. Frauenfelder, H. et al. Thermal expansion of a protein. Biochemistry 26, 254–261 (1987).

    Article  CAS  Google Scholar 

  12. Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  Google Scholar 

  13. Nilsson, L., Clore, G.M., Gronenborn, A.M., Brünger, A.T. & Karplus, M. Structure refinement of oligonucleotides by molecular dynamics with nuclear Overhauser effect interproton distance restraints: application to 5′ d(C-G-T-A-C-G)2 . J. Mol. Biol. 188, 455–475 (1986).

    Article  CAS  Google Scholar 

  14. Colonna-Cesari, F. et al. Interdomain motion in liver alcohol dehydrogenase: structural and energetic analysis of the hinge bending mode. J. Biol. Chem. 261, 15273–15280 (1986).

    CAS  PubMed  Google Scholar 

  15. Harvey, S.C., Prabhakaran, M., Mao, B. & McCammon, J.A. Phenylalanine transfer RNA: molecular dynamics simulation. Science 223, 1189–1191 (1984).

    Article  CAS  Google Scholar 

  16. Case, D.A. & Karplus, M. Dynamics of ligand binding to heme proteins. J. Mol. Biol. 132, 343–368 (1979).

    Article  CAS  Google Scholar 

  17. Brooks, B.R. & Karplus, M. Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. USA 80, 6571–6575 (1983).

    Article  CAS  Google Scholar 

  18. Irikura, K.K., Tidor, B., Brooks, B.R. & Karplus, M. Transition from B to Z DNA: contribution of internal fluctuations to the configurational entropy difference. Science 229, 571–572 (1985).

    Article  CAS  Google Scholar 

  19. Simonson, T., Archontis, G. & Karplus, M. Free energy simulations come of age: protein-ligand recognition. Accts. Chem. Res. 35, 430–437 (2002).

    Article  CAS  Google Scholar 

  20. Brooks, B.R. et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  21. Weiner, P.W. & Kollman, P.A. AMBER: assisted model building with energy refinement. A general program for modelling molecules and their interactions. J. Comput. Chem. 2, 287–303 (1981).

    Article  CAS  Google Scholar 

  22. Scott, W.R.P. et al. The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103, 3596–3607 (1999).

    Article  CAS  Google Scholar 

  23. Tuckerman, M.E. & Martyna, G.J. Understanding modern molecular dynamics: techniques and applications. J. Phys. Chem. 104, 159–178 (2000).

    Article  CAS  Google Scholar 

  24. van Gunsteren, W.F., Weiner, P.K. & Wilkinson, A.J. Computational Simulation of Biomolecular Systems: Theoretical and Experimental Applications Vol. 2 (ESCOM, Leiden; 1993).

    Google Scholar 

  25. Becker, O.M., MacKerell, A.D. Jr, Roux, B. & Watanabe, M. Computational Biochemistry and Biophysics (Marcel Dekker, New York; 2001).

    Book  Google Scholar 

  26. Berendensen, N.J.C. & Hayword, S. Collective protein dynamics in relation to function. Curr. Opin. Struct. Biol. 10, 165–169 (2000).

    Article  Google Scholar 

  27. Hayward, S., Kitao, A. & Gō, N. Harmonicity and anharmonicity in protein dynamics. Proteins Struct. Funct. Genet. 23, 177–186 (1995).

    Article  CAS  Google Scholar 

  28. Zaloj, V. & Elber, R. Parallel computations of molecular dynamics trajectories using the stochastic path approach. Comput. Phys. Commun. 128, 118–127 (2000).

    Article  CAS  Google Scholar 

  29. Lamb, M.L. & Jorgenson, W. Computational approaches to molecular recognition. Curr. Opin. Struct. Biol. 1, 449–457 (1997).

    Article  CAS  Google Scholar 

  30. Kollman, P. Free energy calculations: Application to chemical and biological phenomena. Chem. Rev. 93, 2395–2421 (1993).

    Article  CAS  Google Scholar 

  31. van Gunsteren, W.F. & Mark, A.E. Validation of molecular dynamics simulations. J. Chem. Phys. 108, 6109–6116 (1998).

    Article  CAS  Google Scholar 

  32. Gao, J. & Truhlar, D.G. Quantum mechanical methods for enzyme kinetics. Annu. Rev. Phys. Chem. 53, 467–505 (2002).

    Article  CAS  Google Scholar 

  33. Levitt, M. Computer simulations of the DNA double helix dynamics. Cold Spring Harb. Symp. Quant. Biol. 47, 231–252 (1983).

    Article  Google Scholar 

  34. Wrabl, J.O., Shortle, D. & Woolf, T.B. Correlation between changes in nuclear magnetic resonance order parameters and conformational entropy: molecular dynamics simulations of native and denatured Staphylococcal nuclease. Proteins Struct. Funct. Genet. 38, 123–133 (2000).

    Article  CAS  Google Scholar 

  35. Lee, A.L. & Wand, A.J. Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature 411, 501–504 (2001).

    Article  CAS  Google Scholar 

  36. McCammon, J.A. & Harvey, S. Dynamics of Proteins and Nucleic Acids (Cambridge University Press, Cambridge, UK; 1987).

    Book  Google Scholar 

  37. Brooks, C.L. III, Karplus, M. & Pettitt, B.M. Proteins: A Theoretical Perspective of Dynamics, Structure, & Thermodynamics (John Wiley & Sons, New York; 1988).

    Book  Google Scholar 

  38. Karplus, M., Ichiye, I. & Pettitt, B.M. Configurational entropy of native proteins. Biophys. J. 52, 1083–1085 (1987).

    Article  CAS  Google Scholar 

  39. Fischer, S. & Verma, S. Binding of buried structural waters increases the flexibility of proteins. Proc. Natl. Acad. Sci. USA 96, 9613–9615 (1999).

    Article  CAS  Google Scholar 

  40. Phelps, D.K. & Post, C.B. A novel basis for capsid stabilization by antiviral compounds. J. Mol. Biol. 254, 544–551 (1995).

    Article  CAS  Google Scholar 

  41. Vitkup, D., Ringe, D., Petsko, G.A. & Karplus, M. Solvent mobility and the protein 'glass' transition. Nature Struct. Biol. 7, 34–38 (2000).

    Article  CAS  Google Scholar 

  42. Hagen, S.J., Hofrichter, J. & Eaton, W.A. Protein reaction-kinetics in a room-temperature glass. Science 269, 959–962 (1995).

    Article  CAS  Google Scholar 

  43. Ellis, R.J. & Hartl, F.U. Principles of protein folding in the cellular environment. Curr. Opin. Struct. Biol. 9, 102–110 (1999).

    Article  CAS  Google Scholar 

  44. Xu, A., Horwich, A.L. & Sigler, P.B. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388, 741–750 (1997).

    Article  CAS  Google Scholar 

  45. Ma, J.P., Sigler, P.B., Xu, Z.H. & Karplus, M. A dynamic model for the allosteric mechanism of GroEL. J. Mol. Biol. 302, 303–313 (2000).

    Article  CAS  Google Scholar 

  46. Ranson, N.A. et al. ATP-bound states of GroEL captured by cryo-electron microscopy. Cell 107, 869–879 (2001).

    Article  CAS  Google Scholar 

  47. Young, M.A., Gonfloni, S., Superti-Furga, G., Roux, B. & Kuriyan, J. Dynamic coupling between the SH2 and SH3 domains of c-Src and hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell 105, 115–126 (2001).

    Article  CAS  Google Scholar 

  48. Tai, K., Shen, T., Borjesson, U., Philippopoulos, M. & McCammon, J.A. Analysis of a ten-nanosecond molecular dynamics simulation of mouse acetylcholinesterase. Biophys. J. 81, 715–724 (2001).

    Article  CAS  Google Scholar 

  49. Dobson, C.M., Šali, A. & Karplus, M. Protein folding: a perspective from theory and experiment. Angew. Chem. Int. Ed. Engl. 37, 868–893 (1998).

    Article  Google Scholar 

  50. Warshel, A. & Parson, W.W. Dynamics of biochemical and biophysical reactions: insight from computer simulations. Q. Rev. Biophys. 34, 563–679 (2001).

    Article  CAS  Google Scholar 

  51. Gehlen, J.N., Marchi, M. & Chandler, D. Dynamics affecting the primary charge-transfer in photosynthesis. Science 263, 499–502 (1994).

    Article  CAS  Google Scholar 

  52. Balabin, I.A. & Onuchi, J.N. Dynamically controlled protein tunneling paths in photosynthetic reaction centers. Science 290, 114–117 (2000).

    Article  CAS  Google Scholar 

  53. Ben-Nun, M. et al. Quantum dynamics of the femtosecond photoisomerization of retinal in bacteriorhodopsin. Faraday Discuss. 110, 447–462 (1998).

    Article  CAS  Google Scholar 

  54. Weber, W., Helms, V., McCammon, J.A. & Langhoff, P.W. Shedding light on the dark and weakly fluorescent states of green fluorescent proteins. Proc. Natl. Acad. Sci. USA 96, 6177–6182 (1999).

    Article  CAS  Google Scholar 

  55. Zhou, Y. & Karplus, M. Interpreting the folding kinetics of helical proteins. Nature 401, 400–403 (1999).

    CAS  PubMed  Google Scholar 

  56. Cavalli, A., Ferrara, P. & Caflisch, A. Weak temperature dependence of the free energy surface and folding pathways of structured peptides. Proteins Struct. Funct. Genet. 47, 305–314 (2002).

    Article  CAS  Google Scholar 

  57. Polanyi, J. & Zewail, A.H. Direct observation of the transition-state. Accts. Chem. Res. 28, 119–132 (1995).

    Article  CAS  Google Scholar 

  58. Lim, M., Jackson, T.A. & Anfinrud, P.A. Binding of CO to myoglobin from a haem pocket docking site to form nearly linear Fe-C-O. Science 269, 962–966 (1995).

    Article  CAS  Google Scholar 

  59. de Groot, B.L. & Grubmüller, H. Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF. Science 294, 2353–2357 (2001).

    Article  CAS  Google Scholar 

  60. Ma, J. et al. A dynamic analysis of the rotation mechanism for conformational change in F1-ATPase. Structure 10, 921–931 (2002).

    Article  CAS  Google Scholar 

  61. Bückmann, R.A. & Grubmüller, H. Nanosecond molecular dynamics simulation primary mechanical energy transfer steps in F1-ATP synthase. Nature Struct. Biol. 9, 196–202 (2002).

    Google Scholar 

  62. Marrink, S.J., Tieleman, D.P. & Mark, A.E. Molecular dynamics simulation of the kinetics of spontaneous micelle formation. J. Phys. Chem. B 104, 12165–12173 (2000).

    Article  CAS  Google Scholar 

  63. Bogusz, S., Venable, R.M. & Pastor, R.W. Molecular dynamics simulations of octylglucoside micelles: dynamic properties. J. Phys. Chem. B 105, 8312–8321 (2001).

    Article  CAS  Google Scholar 

  64. Cowan, W.M., Sudhof, T.C. & Stevens, C.F. Synapses (Johns Hopkins University Press, Baltimore; 2000).

    Google Scholar 

  65. Lippincott-Schwartz, J. Ripping up the nuclear envelope. Nature 416, 31–32 (2002).

    Article  CAS  Google Scholar 

  66. Tama, F. & Brooks, C.L. III The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus. J. Mol. Biol. 318, 730–747 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

Work in the Karplus group is supported in part by a grant from the NIH. Work in the McCammon group is supported in part by the NSF, NIH, the W.M. Keck Foundation, the National Biomedical Computation Resource and the HHMI. As is evident from the references, our co-workers have contributed much of the work summarized here. We apologize to the large number of scientists whose important contributions to molecular dynamics simulations could not be cited because of space limitations on this short review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Karplus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karplus, M., McCammon, J. Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol 9, 646–652 (2002). https://doi.org/10.1038/nsb0902-646

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0902-646

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing