Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural insights into the hydrolysis of cellular nitric oxide synthase inhibitors by dimethylarginine dimethylaminohydrolase

A Correction to this article was published on 01 September 2001

Abstract

Nitric oxide synthase is inhibited by asymmetric NG-methylated derivatives of arginine whose cellular levels are controlled in part by dimethylarginine dimethylaminohydrolase (DDAH, EC 3.5.3.18). Levels of asymmetric NG,NG-dimethylarginine (ADMA) are known to correlate with certain disease states. Here, the first structure of a DDAH shows an unexpected similarity to arginine:glycine amidinotransferase (EC 2.1.4.1) and arginine deiminase (EC 3.5.3.6), thus defining a superfamily of arginine-modifying enzymes. The identification of a Cys-His-Glu catalytic triad and the structures of a Cys to Ser point mutant bound to both substrate and product suggest a reaction mechanism. Comparison of the ADMA–DDAH and arginine–amidinotransferase complexes reveals a dramatic rotation of the substrate that effectively maintains the orientation of the scissile bond of the substrate with respect to the catalytic residues. The DDAH structure will form a basis for the rational design of selective inhibitors, which are of potential use in modulating NO synthase activity in pathological settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DDAH fold and comparison with the amidinotransferases.
Figure 2: Ligand electron density.
Figure 3: Stereo views of ligand binding in the active site.
Figure 4: Proposed first step of the mechanism.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Colasanti, M. & Suzuki, H. TIPS 21, 249–252 (2000).

    CAS  PubMed  Google Scholar 

  2. Fischmann, T.O. et al. Nature Struct. Biol. 6, 233–242 (1999).

    Article  CAS  Google Scholar 

  3. Moncada, S. J. Roy. Soc. Med. 92, 164–169 (1999).

    Article  CAS  Google Scholar 

  4. Leiper, J.M. & Vallance, P. Cardiovasc. Res. 43, 542–548 (1999).

    Article  CAS  Google Scholar 

  5. Vallance, P., Leone, A., Calver, A., Collier, J. & Moncada, S. Lancet 339, 572–575 (1992).

    Article  CAS  Google Scholar 

  6. Miyazaki, H. et al. Circulation 99, 1141–1146 (1999).

    Article  CAS  Google Scholar 

  7. MacAllister, R.J. et al. British J. Pharm. 119, 1533–1540 (1996).

    Article  CAS  Google Scholar 

  8. Leiper, J.M. et al. Biochem. J. 343, 209–214 (1999).

    Article  CAS  Google Scholar 

  9. Tran, C.T.L., Fox, M.F., Vallance, P. & Leiper, J.M. Genomics 67, 101–105 (2000).

    Article  Google Scholar 

  10. Santa Maria, J., Vallance, P., Charles, I.G. & Leiper, J.M. Mol. Microbiol. 33, 1278–1279 (1999).

    Article  CAS  Google Scholar 

  11. Humm, A., Fritsche, E., Steinbacher, S. & Huber, R. EMBO J. 16, 3373–3385 (1997).

    Article  CAS  Google Scholar 

  12. Fritsche E., Humm A. & Huber R. J. Biol .Chem. 274, 3026–3032 (1999).

    Article  CAS  Google Scholar 

  13. Fritsche, E., Bergner, A., Humm, A., Piepersberg, W. & Huber, R. Biochemistry 37, 17664–17672 (1998).

    Article  CAS  Google Scholar 

  14. Ogawa, T., Kimoto, M. & Sasaoka, K. J. Biol. Chem. 264, 10205–10209 (1989).

    CAS  PubMed  Google Scholar 

  15. Storer, A.C. & Ménard, R. Methods Enzymol. 244, 486–500 (1994).

    Article  CAS  Google Scholar 

  16. Knodler, L.A., Sekyere, E.O., Stewart, T.S., Schofield, P.J. & Edwards, M.R. J. Biol. Chem. 273, 4470–4477 (1998).

    Article  CAS  Google Scholar 

  17. Hendrickson, W.A., Horton, J.R. & LeMaster, D.M. EMBO J. 9, 1665–1672 (1990).

    Article  CAS  Google Scholar 

  18. Leslie A.G.W. Joint CCP4 and ESF-EAMCB Newsletter on Protein Crystallography 26 (1992.

    Google Scholar 

  19. CCP4 Collaborative Computing Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  20. Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  21. Cowtan, K. In Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 31, 34–38 (1994).

    Google Scholar 

  22. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  23. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  24. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  25. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  26. Esnouf R.M. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was initiated and funded in part by a British Heart Foundation Programme Grant to P.V., and by the BBSRC through the Bloomsbury Centre for Structural Biology. We thank ESRF and SRS synchrotron sources for use of data collection facilities, and P. Driscoll, D. Selwood and P. Murray-Rust for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil McDonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray-Rust, J., Leiper, J., McAlister, M. et al. Structural insights into the hydrolysis of cellular nitric oxide synthase inhibitors by dimethylarginine dimethylaminohydrolase. Nat Struct Mol Biol 8, 679–683 (2001). https://doi.org/10.1038/90387

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90387

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing