Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

UBA domains of DNA damage-inducible proteins interact with ubiquitin

Abstract

Rad23 is a highly conserved protein involved in nucleotide excision repair (NER) that associates with the proteasome via its N-terminus. Its C-terminal ubiquitin-associated (UBA) domain is evolutionarily conserved from yeast to humans. However, the cellular function of UBA domains is not completely understood. Recently, RAD23 and DDI1, both DNA damage-inducible genes encoding proteins with UBA domains, were implicated genetically in Pds1-dependent mitotic control in yeast. The UBA domains of RAD23 and DDI1 are required for these interactions. Timely degradation of Pds1 via the ubiquitin/proteasome pathway allows anaphase onset and is crucial for chromosome maintenance. Here, we show that Rad23 and Ddi1 interact directly with ubiquitin and that this interaction is dependent on their UBA domains, providing a possible mechanism for UBA-dependent cell cycle control. Moreover, we show that a hydrophobic surface on the UBA domain, which from structural work had been predicted to be a protein–protein interaction interface, is indeed required for ubiquitin binding. By demonstrating that UBA domains interact with ubiquitin, we have provided the first indication of a cellular function for the UBA domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: UBA domains and the gene structures of RAD23 and DDI1.
Figure 2: Rad23 and Ddi1 interact with ubiquitin.
Figure 3: UBA domains mediate interaction of Rad23 and Ddi1 with ubiquitin.
Figure 4: Sites of interaction of Rad23 and Ddi1 with ubiquitin provided by UBA structure.

Similar content being viewed by others

References

  1. Hofmann, K. & Bucher, P. Trends Biochem. Sci. 21, 172–173 (1996).

    Article  CAS  Google Scholar 

  2. Dieckmann, T. et al. Nature Struct. Biol. 5, 1042–1047 (1998).

    Article  CAS  Google Scholar 

  3. Masutani, C. et al. Mol. Cell. Biol. 17, 6915–6923 (1997).

    Article  CAS  Google Scholar 

  4. Sugasawa, K. et al. Mol. Cell. Biol. 17, 6924–6931 (1997).

    Article  CAS  Google Scholar 

  5. Schauber, C. et al. Nature 391, 715–718 (1998).

    Article  CAS  Google Scholar 

  6. Watkins, J.F., Sung, P., Prakash, L. & Prakash, S. Mol. Cell. Biol. 13, 7757–7765 (1993).

    Article  CAS  Google Scholar 

  7. Hiyama, H. et al. J. Biol. Chem. 274, 28019–28025 (1999).

    Article  CAS  Google Scholar 

  8. Miao, F. et al. J. Biol. Chem. 275, 28433–28438 (2000).

    Article  CAS  Google Scholar 

  9. Withers-Ward, E.S. et al. J. Virol. 71, 9732–9742 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, N. et al. Proc. Natl. Acad. Sci. USA 94, 9232–9237 (1997).

    Article  CAS  Google Scholar 

  11. Liu, Y., Dai, H. & Xiao, W. Mol. Gen. Genet. 255, 533–542 (1997).

    Article  CAS  Google Scholar 

  12. Lustgarten, V. & Gerst, J.E. Mol. Cell Biol. 19, 4480–4494 (1999).

    Article  CAS  Google Scholar 

  13. Uetz, P. et al. Nature 403, 623–627 (2000).

    Article  CAS  Google Scholar 

  14. Yamamoto, A., Guacci, V. & Koshland, D. J. Cell. Biol. 133, 99–110 (1996).

    Article  CAS  Google Scholar 

  15. Yamamoto, A., Guacci, V. & Koshland, D. J. Cell. Biol. 133, 85–97 (1996).

    Article  CAS  Google Scholar 

  16. Cohen-Fix, O., Peters, J.M., Kirschner, M.W. & Koshland, D. Genes Dev. 10, 3081–3093 (1996).

    Article  CAS  Google Scholar 

  17. Clarke, D.J. et al. Mol. Cell Biol. 21, 1997–2007 (2001).

    Article  CAS  Google Scholar 

  18. Lindsey, D.F. et al. J. Biol. Chem. 273, 29178–29187 (1998).

    Article  CAS  Google Scholar 

  19. Vadlamudi, R.K., Joung, I., Strominger, J.L. & Shin, J. J. Biol. Chem. 271, 20235–20237 (1996).

    Article  CAS  Google Scholar 

  20. Schultz, J., Milpetz, F., Bork, P. & Ponting, C.P. Proc. Natl. Acad. Sci. USA 95, 5857–5864 (1998).

    Article  CAS  Google Scholar 

  21. Joazeiro, C.A. et al. Science 286, 309–312 (1999).

    Article  CAS  Google Scholar 

  22. Ortolan, T.G. et al. Nature Cell Biol. 2, 601–608 (2000).

    Article  CAS  Google Scholar 

  23. Richardson, H.E., Wittenberg, C., Cross, F.R. & Reed, S.I. Cell 59, 1127–1133 (1989).

    Article  CAS  Google Scholar 

  24. Clarke, D.J., Segal, M., Mondesert, G. & Reed, S.I. Curr. Biol. 9, 365–368 (1999).

    Article  CAS  Google Scholar 

  25. Sherman, F., Fink, G. & Hicks, J.B. Methods in yeast genetics (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; 1982).

    Google Scholar 

  26. Wach, A., Brachat, A., Pohlmann, R. & Philippsen, P. Yeast 10, 1793–1808 (1994).

    Article  CAS  Google Scholar 

  27. Mondesert, G., Clarke, D.J. & Reed, S.I. Genetics 147, 421–434 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gyuris, J., Golemis, E., Chertkov, H. & Brent, R. Cell 75, 791–803 (1993).

    Article  CAS  Google Scholar 

  29. Simon, M.N. et al. Nature 376, 702–705 (1995).

    Article  CAS  Google Scholar 

  30. Muhlrad, D., Hunter, R. & Parker, R. Yeast 8, 79–82 (1992).

    Article  CAS  Google Scholar 

  31. Kaiser, P., Sia, R.A., Bardes, E.G., Lew, D.J. & Reed, S.I. Genes Dev. 12, 2587–2597 (1998).

    Article  CAS  Google Scholar 

  32. Heitz, F. et al. Biochemistry 36, 4995–5003 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.L.B. was supported by both NIH and University of California Office of the President fellowships. D.J.C. was supported by both EMBO and DOD Breast Cancer Research Program fellowships. We would like to thank L. Prakash for the α-Rad23 antibody and E. Komives for help in rendering the ribbon diagram of the HHR23A UBA2 NMR structure. We would also like to thank the members of the Reed laboratory and the Scripps Cell Cycle groups for helpful discussions and specifically J. Tainer for use of his laboratory and computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven I. Reed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertolaet, B., Clarke, D., Wolff, M. et al. UBA domains of DNA damage-inducible proteins interact with ubiquitin. Nat Struct Mol Biol 8, 417–422 (2001). https://doi.org/10.1038/87575

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87575

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing