Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5

A Corrigendum to this article was published on 01 October 2002

Abstract

Many proteins contain targeting signals within their sequences that specify their delivery to particular organelles. The peroxisomal targeting signal-1 (PTS1) is a C-terminal tripeptide that is sufficient to direct proteins into peroxisomes. The PTS1 sequence closely approximates Ser-Lys-Leu-COO. PEX5, the receptor for PTS1, interacts with the signal via a series of tetratricopeptide repeats (TPRs) within its C-terminal half. Here we report the crystal structure of a fragment of human PEX5 that includes all seven predicted TPR motifs in complex with a pentapeptide containing a PTS1 sequence. Two clusters of three TPRs almost completely surround the peptide, while a hinge region, previously identified as TPR4, forms a distinct structure that enables the two sets of TPRs to form a single binding site. This structure reveals the molecular basis for PTS1 recognition and demonstrates a novel mode of TPR–peptide interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding of human PEX5 constructs with lissamine sulfonamide modified pentapeptides.
Figure 2: Schematic views of the PEX5–PTS1 complex.
Figure 3: Recognition of the PTS1 containing peptide.
Figure 4: Relationship of peptide with the TPR clusters.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. van den Bosch, H., Schutgens, R.B.H., Wanders, R.J.A. & Tager, J.M. Annu. Rev. Biochem. 61, 157–197 (1992).

    Article  CAS  Google Scholar 

  2. Gould, S.J. & Valle, D. Trends Genet. 16, 340–345 (2000).

    Article  CAS  Google Scholar 

  3. Gould, S.J., Keller, G.A., Hosken, N., Wilkinson, J. & Subramani, S. J. Cell Biol. 108, 1657–1664 (1989).

    Article  CAS  Google Scholar 

  4. Dodt, G. et al. Nature Genet. 9, 115–125 (1995).

    Article  CAS  Google Scholar 

  5. Terlecky, S.R., Nuttley, W.M., McCollum, D., Sock, E. & Subramani, S. EMBO J. 14, 3627–3634 (1995).

    Article  CAS  Google Scholar 

  6. Gatto, G.J., Jr., Geisbrecht, B.V., Gould, S.J. & Berg, J.M. Proteins 38, 241–246 (2000).

    Article  CAS  Google Scholar 

  7. Goebl, M. & Yanagida, M. Trends Biochem. Sci. 16, 173–177 (1991).

    Article  CAS  Google Scholar 

  8. Blatch, G.L. & Lässle, M. BioEssays 21, 932–939 (1999).

    Article  CAS  Google Scholar 

  9. Lamb, J.R., Tugendreich, S. & Hieter, P. Trends Biochem. Sci. 20, 257–259 (1995).

    Article  CAS  Google Scholar 

  10. Hirano, T., Kinoshita, N., Morikawa, K. & Yanagida, M. Cell 60, 319–328 (1990).

    Article  CAS  Google Scholar 

  11. Sikorski, R.S., Boguski, M.S., Goebl, M. & Hieter, P. Cell 60, 307–317 (1990).

    Article  CAS  Google Scholar 

  12. Das, A.K., Cohen, P.W. & Barford, D. EMBO J. 17, 1192–1199 (1998).

    Article  CAS  Google Scholar 

  13. Scheufler, C. et al. Cell 101, 199–210 (2000).

    Article  CAS  Google Scholar 

  14. Schliebs, W. et al. J. Biol. Chem. 274, 5666–5673 (1999).

    Article  CAS  Google Scholar 

  15. Swinkels, B.W., Gould, S.J. & Subramani, S. FEBS Lett. 305, 133–136 (1992).

    Article  CAS  Google Scholar 

  16. Braverman, N., Dodt, G., Gould, S.J. & Valle, D. Hum. Mol. Genet. 7, 1195–1205 (1998).

    Article  CAS  Google Scholar 

  17. Shimozawa, N. et al. Biochem. Biophys. Res. Commun. 262, 504–508 (1999).

    Article  CAS  Google Scholar 

  18. Blobel, G. & Dobberstein, B. J. Cell Biol. 67, 835–851 (1975).

    Article  CAS  Google Scholar 

  19. Keenan, R.J., Freymann, D.M., Walter, P. & Stroud, R.M. Cell 94, 181–191 (1998).

    Article  CAS  Google Scholar 

  20. Clemons, W.M., Jr., Gowda, K., Black, S.D., Zwieb, C. & Ramakrishnan, V. J. Mol. Biol. 292, 697–705 (1999).

    Article  CAS  Google Scholar 

  21. Batey, R.T., Rambo, R.P., Lucast, L., Rha, B. & Doudna, J.A. Science 287, 1232–1239 (2000).

    Article  CAS  Google Scholar 

  22. Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Cell 94, 193–204 (1998).

    Article  CAS  Google Scholar 

  23. Opperdoes, F.R. Annu. Rev. Microbiol. 41, 127–151 (1987).

    Article  CAS  Google Scholar 

  24. Keller, G.A. et al. J. Cell Biol. 114, 893–904 (1991).

    Article  CAS  Google Scholar 

  25. de Walque, S., Kiel, J.A., Veenhuis, M., Opperdoes, F.R. & Michels, P.A. Mol. Biochem. Parasitol. 104, 106–119 (1999).

    Article  CAS  Google Scholar 

  26. Geisbrecht, B.V., Zhang, D., Schulz, H. & Gould, S.J. J. Biol. Chem. 274, 21797–21803 (1999).

    Article  CAS  Google Scholar 

  27. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  28. Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  29. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  30. Cowtan, K. Joint CCP4 and ESF–EACBM Newsletter. Protein Crystallogr. 31, 34–38 (1994).

    Google Scholar 

  31. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeeldgard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  32. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  33. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  34. Esnouf, R.M. J. Mol. Graphics 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  35. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Leahy, J. Beneken, and C. Dann for technical assistance and many helpful discussions, L. Brand, D. Toptygin, and A. Russo for the use of and assistance with the spectrofluorometer, N. Zachara for assistance with the SMART analysis, and A. Guerrerio for valuable assistance with the design of the anisotropy experiments and data analysis. This work was supported by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy M. Berg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gatto, G., Geisbrecht, B., Gould, S. et al. Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat Struct Mol Biol 7, 1091–1095 (2000). https://doi.org/10.1038/81930

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81930

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing