Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Large unit cells and cellular mechanics

Abstract

Developments in synchrotron radiation mean that the methodological and technological tools are in place to determine the structures of large multi-component macromolecular machines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graph of unit cell volumes (in Å3) against year of publication (the vertical axis is a log scale).
Figure 2: A representation of the difference in unit cell size between tetragonal lysozyme and tetragonal BTV-10 crystals, overlaid on a small portion of a diffraction pattern of BTV-10.

Similar content being viewed by others

References

  1. Chothia, C. Proteins — 1000 families for the molecular biologist. Nature 357, 543–544 (1992).

    Article  CAS  Google Scholar 

  2. Alberts, B. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291– 294 (1998).

    Article  CAS  Google Scholar 

  3. Iwata, S., Ostermeier, C., Ludwig, B. and Michel, H. Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrifcans. Nature 376, 660– 669 (1995).

    Article  CAS  Google Scholar 

  4. Dokland, T. et al. Structure of a viral procapsid with molecular scaffolding. Nature 389, 308–313 (1997).

    Article  CAS  Google Scholar 

  5. Groll, M. et al. Structure of the 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471 (1997).

    Article  CAS  Google Scholar 

  6. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. and Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  7. Tsukihara, T. et al. The whole structure of the 13-subunit cytochrome c oxidase at 2.8 Å. Science 272, 1136–1144 (1997).

    Article  Google Scholar 

  8. Xia, D. et al. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277, 60– 66 (1997).

    Article  CAS  Google Scholar 

  9. Xu, Z., Horwich, A.L. & Sigler, P.B. The crystal structure of the asymmetric GroEL-GroES- (ADP)7 chaperonin complex. Nature 388, 741–750 (1997).

    Article  CAS  Google Scholar 

  10. Redinbo, M.R., Stewart, L., Kuhn, P., Champoux, J.J. & Hol, W.G. Crystal structures of human topoisomerase 1 in covalent and noncovalent complexes with DNA. Science 279, 1504–1513 (1998).

    Article  CAS  Google Scholar 

  11. Grimes, J. M. et al. The atomic structure of the bluetongue virus core, Nature in the press (1998).

  12. Garboczi, D.N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134–141 (1996).

    Article  CAS  Google Scholar 

  13. Garcia, K.C. et al. A. An alpha-beta T cell recptor structure at 2.5 Å and its orientation in the TCR-MHC complex. Science 274, 209–219 (1996).

    Article  CAS  Google Scholar 

  14. Gao, G.F. et al. Crystal structure of the complex between human CD8 alpha(alpha) and HLA-A2. Nature 387, 630– 634 (1997).

    CAS  Google Scholar 

  15. Thygensen, J. et al. Ribosomal crystallography — from crystal growth to initial phasing. J. Cryst. Growth 168, 308– 323 (1996).

    Article  Google Scholar 

  16. Liddington, R. C. et al. Structure of simian virus 40 at 3.8 Å resolution. Nature 354, 278–284 (1991).

    Article  CAS  Google Scholar 

  17. Rodgers, D.W. Cryocrystallography. Structure 2, 1135– 1140 (1994).

    Article  CAS  Google Scholar 

  18. Garmen, E.F. and Schneider, T.R. Macromolecular cryocrystallography. J. Appl. Crystallogr. 30, 211– 237 (1997).

    Article  Google Scholar 

  19. Gruner, S.M. X-ray detectors for macromolecular crystallography. Curr. Opin. Struct. Biol. 4, 765–769 (1994).

    Article  CAS  Google Scholar 

  20. Otwinowski, Z. and Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Meth. Enz. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  21. Steller, I., Bolotovskly, R. & Rossmann, M.G. An algorithm for automatic indexing of oscillation images using Fourier analysis. J. Appl. Crystallogr. 30, 1036–1040 (1997).

    Article  CAS  Google Scholar 

  22. Blake, C.C. et al. Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Å resolution. Nature 206, 757– 761 (1965).

  23. Hendrickson, W.A. Determination of macromolecular structures from anomolous diffraction of synchrotron radiation. Science 254, 51– 58 (1991).

    Article  CAS  Google Scholar 

  24. Sakabe, N. X-ray diffraction data collection system for modern protein crystallography with a Weissenberg camera and an imaging plate using synchrotron radiation. Nucl. Inst. Meth. Phys. Res. [A] 303, 448–463 (1991).

    Article  Google Scholar 

  25. Rodgers, D.W. et al. The structure of unliganded reverse transcriptase from human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 92, 1222–1226 (1995).

    Article  CAS  Google Scholar 

  26. Yeh, J. & Hol, W.G.J. A flash annealing technique to improve diffraction limits and lower mosaicity in crystals of glycerol kinase. Acta Crystallogr. D54, 479–480 (1998).

    CAS  Google Scholar 

  27. Knäblein, J. et al. Ta6Br122+, a tool for phase determination of large biological assemblies by X-ray crystallography. J. Mol. Biol. 270, 1–7 (1997).

  28. Ren, J. et al. High resolution structures of HIV-1 RT from four RT-inhibitor complexes. Nature Struct. Biol. 2, 293– 302 (1995).

    Article  CAS  Google Scholar 

  29. Zhang, Z. et al. Electron transfer by domain movement in cytochrome bc1. Nature 392, 677–684 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank R. Esnouf, R. Mably, A. Perrakis for help and S. Harrison, W. Hol, J. Johnson, Y. Jones, T. Richmond, M. Rossmann, T. Steitz and A. Yonath for sharing some of their thoughts.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimes, J., Stuart, D. Large unit cells and cellular mechanics. Nat Struct Mol Biol 5 (Suppl 8), 630–634 (1998). https://doi.org/10.1038/1322

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/1322

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing