Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Equilibrium NMR studies of unfolded and partially folded proteins

Abstract

Multidimensional NMR studies of proteins in unfolded and partially folded states give unique insights into their structures and dynamics and provide new understanding of protein folding and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: 1H-15N HSQC spectra of apomyoglobin at three pHs, illustrating the decrease in resonance dispersion in the 1H dimension as the protein unfolds.
Figure 3: Cα backbone superposition of residues 56–140 of folded staphylococcal nuclease (thick tube) and five structures calculated for the fragment Δ131Δ (thin line).
Figure 4: Schematic diagram illustrating the increasing restriction of backbone flexibility as myoglobin folds to increasingly structured and increasingly compact states, from the acid-unfolded state (Uacid), to the pH 4.1 molten globule state (IMG), to native apomyoglobin (Napo), and finally to fully folded holomyoglobin (Nholo).

Similar content being viewed by others

References

  1. Dyson, H.J. & Wright, P.E. Annu. Rev. Phys. Chem. 47, 369–395 (1996).

    Article  CAS  Google Scholar 

  2. Dobson, C.M. Nature Struct. Biol. 5, 504–507 (1998).

    Article  CAS  Google Scholar 

  3. Roder, H., Elöve, G.A. & Englander, S.W. Nature 335, 700– 704 (1988).

    Article  CAS  Google Scholar 

  4. Udgaonkar, J.B. & Baldwin, R.L. Nature 335, 694–699 (1988).

    Article  CAS  Google Scholar 

  5. Braun, D., Wider, G. & Wüthrich, K. J. Am. Chem. Soc. 116, 8466– 8469 (1994).

    Article  CAS  Google Scholar 

  6. Zhang, O., Forman-Kay, J.D., Shortle, D. & Kay, L.E. J. Biomol. NMR 9, 181–200 (1997).

    Article  CAS  Google Scholar 

  7. Logan, T.M., Thériault, Y. & Fesik, S.W. J. Mol. Biol. 236, 637– 648 (1994).

    Article  CAS  Google Scholar 

  8. Alexandrescu, A.T., Abeygunawardana, C. & Shortle, D. Biochemistry 33, 1063– 1072 (1994).

    Article  CAS  Google Scholar 

  9. Eliezer, D., Yao, J., Dyson, H.J. & Wright, P.E. Nature Struct. Biol. 5, 148–155 ( 1998).

    Article  CAS  Google Scholar 

  10. Baum, J., Dobson, C.M., Evans, P.A. & Hanley, C. Biochemistry 28, 7–13 ( 1989).

    Article  CAS  Google Scholar 

  11. Dyson, H.J. & Wright, P.E. Ann. Rev. Biophys. Biophys. Chem. 20, 519–538 ( 1991).

    Article  CAS  Google Scholar 

  12. Wright, P.E., Dyson, H.J. & Lerner, R.A. Biochemistry 27, 7167– 7175 (1988).

    Article  CAS  Google Scholar 

  13. Wishart, D.S. & Sykes, B.D. Meth. Enz. 239, 363–392 (1994).

    Article  CAS  Google Scholar 

  14. Smith, L.J. et al. J. Mol. Biol. 255, 494– 506 (1996).

    Article  CAS  Google Scholar 

  15. Smith, L.J., Fiebig, K.M., Schwalbe, H. & Dobson, C.M. Folding & Design 1, R95–R106(1996).

    Article  CAS  Google Scholar 

  16. Zhang, O. & Forman-Kay, J.D. Biochemistry 36 , 3959–3970 (1997).

    Article  CAS  Google Scholar 

  17. Pan, H., Barbar, E., Barany, G. & Woodward, C. Biochemistry 34, 13974–13981 ( 1995).

    Article  CAS  Google Scholar 

  18. Dyson, H.J., Merutka, G., Waltho, J.P., Lerner, R.A. & Wright, P.E. J. Mol. Biol. 226, 795–817 (1992).

    Article  CAS  Google Scholar 

  19. Dyson, H.J. et al. J. Mol. Biol. 226, 819– 835 (1992).

    Article  CAS  Google Scholar 

  20. Zhang, O., Kay, L.E., Shortle, D. & Forman-Kay, J.D. J. Mol. Biol. 272, 9–20 ( 1997).

    Article  CAS  Google Scholar 

  21. Hughson, F.M., Wright, P.E. & Baldwin, R.L. Science 249, 1544– 1548 (1990).

    Article  CAS  Google Scholar 

  22. Schulman, B.A., Kim, P.S., Dobson, C.M. & Redfield, C. Nature Struct. Biol. 4, 630–634 ( 1997).

    Article  CAS  Google Scholar 

  23. Jennings, P.A. & Wright, P.E. Science 262, 892–896 (1993).

    Article  CAS  Google Scholar 

  24. Harding, M.M., Williams, D.H. & Woolfson, D.N. Biochemistry 30, 3120– 3128 (1991).

    Article  CAS  Google Scholar 

  25. Neri, D., Billeter, M., Wider, G. & Wüthrich, K. Science 257, 1559–1563 ( 1992).

    Article  CAS  Google Scholar 

  26. Gillespie, J.R. & Shortle, D. J. Mol. Biol. 268, 158–169 ( 1997).

    Article  CAS  Google Scholar 

  27. Gillespie, J.R. & Shortle, D. J. Mol. Biol. 268, 170–184 ( 1997).

    Article  CAS  Google Scholar 

  28. Brutscher, B., Brüschweiler, R. & Ernst, R.R. Biochemistry 36, 13043– 13053 (1997).

    Article  CAS  Google Scholar 

  29. Farrow, N.A., Zhang, O., Forman-Kay, J.D. & Kay, L.E. Biochemistry 36, 2390–2402 (1997).

    Article  CAS  Google Scholar 

  30. Frank, M.K., Clore, G.M. & Gronenborn, A.M. Prot. Sci. 4, 2605– 2615 (1995).

    Article  CAS  Google Scholar 

  31. Alexandrescu, A.T. & Shortle, D. J. Mol. Biol. 242, 527–546 ( 1994).

    Article  CAS  Google Scholar 

  32. Plaxco, K.W. & Gross, M. Nature 386, 657–659 (1997).

    Article  CAS  Google Scholar 

  33. Daughdrill, G.W., Hanely, L.J. & Dahlquist, F.W. Biochemistry 37, 1076– 1082 (1998).

    Article  CAS  Google Scholar 

  34. Penkett, C.J., Redfield, C., Dodd, I., et al. J. Mol. Biol. 274, 152– 159 (1997).

    Article  CAS  Google Scholar 

  35. Radhakrishnan, I. et al. Cell 91, 741–752 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Eliezer, P. Jennings and S. Cavagnero for assistance with preparation of the figures. This work was supported by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Jane Dyson or Peter E. Wright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyson, H., Wright, P. Equilibrium NMR studies of unfolded and partially folded proteins. Nat Struct Mol Biol 5 (Suppl 7), 499–503 (1998). https://doi.org/10.1038/739

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/739

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing