Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of acetylcholinesterase complexed with the nootropic alkaloid, (–)-huperzine A

Abstract

(–)-Huperzine A (HupA) is found in an extract from a club moss that has been used for centuries in Chinese folk medicine. Its action has been attributed to its ability to strongly inhibit acetylcholinesterase (AChE). The crystal structure of the complex of AChE with optically pure HupA at 2.5 Å resolution shows an unexpected orientation for the inhibitor with surprisingly few strong direct interactions with protein residues to explain its high affinity. This structure is compared to the native structure of AChE devoid of any inhibitor as determined to the same resolution. An analysis of the affinities of structural analogues of HupA, correlated with their interactions with the protein, shows the importance of individual hydrophobic interactions between HupA and aromatic residues in the active-site gorge of AChE

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Liu, J.-S. et al. The structures of huperzine A and B, two new alkaloids exhibiting marked anticholinesterase activity. Can. J. Chem. 64, 837–839 (1986).

    Article  CAS  Google Scholar 

  2. Wang, Y.E., Yue, D.X. & Tang, X.-C. Anticholinesterase activity of huperzine A. Acta Pharmacol. Sinica 7, 110–113 (1986).

    CAS  Google Scholar 

  3. Kozikowski, A.P., Thiels, E., Tang, X.-C. & Hanin, I. Huperzine A – A possible lead structure in the treatment of Alzheimer's disease. Adv. Med. Chem. 1, 175–205 (1992).

    CAS  Google Scholar 

  4. Tang, X.C., Xiong, Z.Q., Qian, B.C., Zhou, Z.F. & Zhang, C.L. Cognition improvement by oral Huperzine A: a novel acetylcholinesterase inhibitor, in Alzheimer Disease: Therapeutic Strategies (eds E. Giacobini & R. Becker) 113–119 (Birkhäuser, Boston, 1994).

    Google Scholar 

  5. Dunnett, S.B. & Fibiger, H.C. Role of forebrain cholinergic systems in learning and memory: relevance to the cognitive deficits of aging and Alzheimer's dementia. Prog. Brain Res. 98, 413–420 (1993).

    Article  CAS  Google Scholar 

  6. Becker, R.E. & Giacobini, E. Cholinergic Basis for Alzheimer Therapy (Birkhäuser, Boston, 1991).

    Book  Google Scholar 

  7. Davis, K.L. & Powchik, P. Tacrine. Lancet 345, 625–630 (1995).

    Article  CAS  Google Scholar 

  8. Giacobini, E. & Becker, R. Alzheimer Disease: Therapeutic Strategies (Birkhäuser, Boston, 1994).

    Book  Google Scholar 

  9. Laganière, S., Corey, J., Tang, X.-C., Wülfert, E. & Hanin, I. Acute and chronic studies with the anticholinesterase huperzine A: Effect on central nervous system cholinergic parameters. Neuropharmacology 30, 763–768 (1991).

    Article  Google Scholar 

  10. Xiong, Z.Q. & Tang, X.C. Effect of Huperzine A, a novel acetylcholinesterase inihibitor, on radial maze performance in rats. Pharmacol. Biochem. Behavior 51, 415–419 (1995).

    Article  CAS  Google Scholar 

  11. Zhang, R.W. et al. Drug evaluation of huperzine A in the treatment of senile memory disorders. Acta Pharmacol. Sinica 12, 250–252 (1991).

    CAS  Google Scholar 

  12. Ved, H.S., Koenig, M.L., Dave, J.R. & Doctor, B.P. Huperzine A decreases neuronal cell death caused by glutamate. Neurobiol. Aging, submitted.

  13. Geib, S.J., Tückmantel, W. & Kozikowski, A.P. Huperzine A - a potent acetylcholinesterase inhibitor of use in the treatment of Alzheimer's disease. Acta Crystallogr. 47, 824–827 (1991).

    Article  Google Scholar 

  14. Ashani, Y., Grunwald, J., Kronman, C., Velan, B. & Shafferman, A. Role of tyrosine 337 in the binding of huperzine A to the active site of human acetylcholinesterase. Mol. Pharmacol. 45, 555–560 (1994).

    CAS  PubMed  Google Scholar 

  15. McKinney, M., Miller, J.H., Yamada, F., Tückmantel, W. & Kozikowski, A.P. Potencies and stereoselectvities of enantiomers of huperzine A for inhibition of rat cortical acetylcholinesterase. Eur. J. Pharmacol. 203, 303–305 (1991).

    Article  CAS  Google Scholar 

  16. Saxena, A. et al. Identification of amino acid residues involved in the binding of Huperzine A to cholinesterases. Prot. Sci. 3, 1770–1778 (1994).

    Article  CAS  Google Scholar 

  17. Pang, Y.-P. & Kozikowski, A. Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies. J. Computer-Aided Mol. Design 8, 669–681 (1994).

    Article  CAS  Google Scholar 

  18. Sussman, J.L. et al. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253, 872–879 (1991).

    Article  CAS  Google Scholar 

  19. Harel, M. et al. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. USA 90, 9031–9035 (1993).

    Article  CAS  Google Scholar 

  20. Axelsen, P.H., Harel, M., Silman, I. & Sussman, J.L. Structure and dynamics of the active site gorge of acetylcholinesterase: synergistic use of molecular dynamics simulation and X-ray crystallography. Prot. Sci. 3, 188–197 (1994).

    Article  CAS  Google Scholar 

  21. Harel, M., Quinn, D.M., Nair, H.K., Silman, I. & Sussman, J.L. The X-ray structure of a transition state analog complex reveals the molecular origins of the catalytic power and substrate specificity of acetylcholinesterase. J. Am. Chem. Soc. 118, 2340–2346 (1996).

    Article  CAS  Google Scholar 

  22. Wlodek, S.T. et al. in Enzymes of the cholinesterase family (eds. Balasubramanian, A.L., Doctor, B.P., Taylor, P. & Quinn, D.M.) 97–104 (Plenum Press, New York, 1995).

    Book  Google Scholar 

  23. Dougherty, D.A. Cation-π interactions in chemistry and biology: a new view of benzene, Phe, Tyr and Trp. Science 271, 163–168 (1996).

    Article  CAS  Google Scholar 

  24. Kozikowski, A.P. et al. Synthesis of huperzine A and its analogues and their anticholinesterase activity. J. Org. Chem. 56, 4636–4645 (1991).

    Article  CAS  Google Scholar 

  25. Verdonk, M.L., Boks, G.J., Kooijman, H., Kanters, J.A. & Kroon, J. Stereochemistry of charged nitrogen-aromatic interactions and its involvement in ligand-receptor binding. J. Computer-Aided Mol. Design 7, 173–182 (1993).

    Article  CAS  Google Scholar 

  26. Sussman, J.L., Seeman, N.C., Kim, S.-H. & Berman, H.M. The crystal structure of a naturally occurring dinucleotide phosphate uridylyl 3′,5′-adenosine phosphate. models for RNA chain folding. J. Mol. Biol. 66, 403–421 (1972).

    Article  CAS  Google Scholar 

  27. Taylor, R. & Kennard, O. Crystallographic evidence for the existence of C-H…O, C-H….N, and C-H…Cl hydrogen bonds. J. Am. Chem. Soc. 104, 5063–5070 (1982).

    Article  CAS  Google Scholar 

  28. Derewenda, Z.S., Derewenda, U. & Kobos, P.M. (His) C-H…O=C< hydrogen bond in the active sites of serine hydrolases. J. Mol. Biol. 241, 83–93 (1994).

    Article  CAS  Google Scholar 

  29. Kozikowski, A.P. et al. Identification of a more potent analogue of the naturally occurring alkaloid Huperzine A; predictive molecular modeling of its interaction with AChE. J. Am. Chem. Soc. 118, 11357–11362 (1996).

    Article  CAS  Google Scholar 

  30. Harel, M., Kleywegt, G.J., Ravelli, R.B.G., Silman, I. & Sussman, J.L. Crystal structure of an acetylcholinesterase-fasciculin complex: interaction of a three-fingered toxin from snake venom with its target. Structure 3, 1355–1366 (1995).

    Article  CAS  Google Scholar 

  31. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  32. Ashani, Y., Peggins III, J.O. & Doctor, B.P. Mechanism of inhibition of cholinesterases by huperzine A. Biochem. Biophys. Res. Comm. 184, 719–726 (1992).

    Article  CAS  Google Scholar 

  33. Sussman, J.L. et al. Purification and crystallization of a dimeric form of acetylcholinesterase from Torpedo californica subsequent to solubilization with phosphatidylinositol-specific phospholipase C. J. Mol. Biol. 203, 821–823 (1988).

    Article  CAS  Google Scholar 

  34. McPherson, A. The growth and preliminary investigation of protein and nucleic acid crystals for X-ray diffraction analysis. Meth. Biochem. Anal. 23, 249–345 (1976).

    CAS  Google Scholar 

  35. Otwinowski, Z. Oscillation data reduction program, in Data Collection and Processing, Proceedings of the CCP4 Study Weekend 29–30 January 1993 (eds L. Sawyer, N. Isaacs & S. Bailey) 56–62 (SERC, Daresbury, 1993).

    Google Scholar 

  36. Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  Google Scholar 

  37. Engh, R.H. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. J. Appl. Crystallogr. A47, 392–400 (1991).

    CAS  Google Scholar 

  38. Laskowski, R.A., MacArthur, M.W., Moss, D. & Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  39. Vriend, G. WHAT IF: a molecular modelling and drug design program. J. Mol. Graph. 8, 52–56 (1990).

    Article  CAS  Google Scholar 

  40. Kleywegt, G.J. & Jones, T.A. Efficient rebuilding of protein structures. Acta Crystallogr. D52, 829–832 (1996).

    CAS  Google Scholar 

  41. InsightII v. 2.3.0, (Biosym Technologies, San Diego, 1993)

  42. Wallace, A.C., Laskowski, R.A. & Thornton, J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Engng. 8, 127–134 (1995).

    Article  CAS  Google Scholar 

  43. Kozikowski, A.P., Yamada, F., Tang, X.-C. & Hanin, I. Synthesis and biological evaluation of (+/−)-Z-huperzine A. Tetrahedr. Let. 31, 6159–6162 (1990).

    Article  CAS  Google Scholar 

  44. Kozikowski, A.P. et al. Delineating the pharmacophoric elements of huperzine A: importance of the unsaturated three-carbon bridge to its AChE inhibitory activity. J. Med Chem. 34, 3399–3402 (1991).

    Article  CAS  Google Scholar 

  45. Liu, J.-S. & Huang, M.-F. The alkaloids huperzines C and D and huperzinine from Lycopodiastrum casuarinoides. Phytochemistry 37, 1759–1761 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raves, M., Harel, M., Pang, YP. et al. Structure of acetylcholinesterase complexed with the nootropic alkaloid, (–)-huperzine A. Nat Struct Mol Biol 4, 57–63 (1997). https://doi.org/10.1038/nsb0197-57

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0197-57

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing