Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Eukaryotic ribosome assembly, transport and quality control

Abstract

Eukaryotic ribosome synthesis is a complex, energy-consuming process that takes place across the nucleolus, nucleoplasm and cytoplasm and requires more than 200 conserved assembly factors. Here, we discuss mechanisms by which the ribosome assembly and nucleocytoplasmic transport machineries collaborate to produce functional ribosomes. We also highlight recent cryo-EM studies that provided unprecedented snapshots of ribosomes during assembly and quality control.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pre-rRNA processing pathway.
Figure 2: Targeting r proteins to assembling preribosomes.
Figure 3: 90S pre-ribosome assembly.
Figure 4: Nuclear pre-60S assembly.
Figure 5: Cytoplasmic quality control of the pre-60S subunit.
Figure 6: Cytoplasmic quality control of the pre-40S subunit.

Similar content being viewed by others

Accession codes

Accessions

Electron Microscopy Data Bank

Protein Data Bank

References

  1. Melnikov, S. et al. One core, two shells: bacterial and eukaryotic ribosomes. Nat. Struct. Mol. Biol. 19, 560–567 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334, 1524–1529 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Nerurkar, P. et al. Eukaryotic ribosome assembly and nuclear export. Int. Rev. Cell Mol. Biol. 319, 107–140 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Pillet, B., Mitterer, V., Kressler, D. & Pertschy, B. Hold on to your friends: dedicated chaperones of ribosomal proteins. BioEssays 39, 1–12 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. de la Cruz, J., Karbstein, K. & Woolford, J.L. Jr. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. Annu. Rev. Biochem. 84, 93–129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Warner, J.R. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24, 437–440 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Wente, S.R. & Rout, M.P. The nuclear pore complex and nuclear transport. Cold Spring Harb. Perspect. Biol. 2, a000562 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rout, M.P., Blobel, G. & Aitchison, J.D. A distinct nuclear import pathway used by ribosomal proteins. Cell 89, 715–725 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Koplin, A. et al. A dual function for chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes. J. Cell Biol. 189, 57–68 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jäkel, S., Mingot, J.M., Schwarzmaier, P., Hartmann, E. & Görlich, D. Importins fulfil a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. EMBO J. 21, 377–386 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ban, N. et al. A new system for naming ribosomal proteins. Curr. Opin. Struct. Biol. 24, 165–169 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pausch, P. et al. Co-translational capturing of nascent ribosomal proteins by their dedicated chaperones. Nat. Commun. 6, 7494 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Holzer, S., Ban, N. & Klinge, S. Crystal structure of the yeast ribosomal protein rpS3 in complex with its chaperone Yar1. J. Mol. Biol. 425, 4154–4160 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Mitterer, V. et al. Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation. Nat. Commun. 7, 10336 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mitterer, V. et al. Nuclear import of dimerized ribosomal protein Rps3 in complex with its chaperone Yar1. Sci. Rep. 6, 36714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schaper, S. et al. A yeast homolog of chromatin assembly factor 1 is involved in early ribosome assembly. Curr. Biol. 11, 1885–1890 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Iouk, T.L., Aitchison, J.D., Maguire, S. & Wozniak, R.W. Rrb1p, a yeast nuclear WD-repeat protein involved in the regulation of ribosome biosynthesis. Mol. Cell. Biol. 21, 1260–1271 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. West, M., Hedges, J.B., Chen, A. & Johnson, A.W. Defining the order in which Nmd3p and Rpl10p load onto nascent 60S ribosomal subunits. Mol. Cell. Biol. 25, 3802–3813 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kressler, D. et al. Synchronizing nuclear import of ribosomal proteins with ribosome assembly. Science 338, 666–671 (2012).This study identified Syo1 as a dedicated chaperone that mediates synchronized import of two r proteins for 5S RNP assembly.

    Article  CAS  PubMed  Google Scholar 

  20. Calviño, F.R. et al. Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site. Nat. Commun. 6, 6510 (2015).

    Article  PubMed  CAS  Google Scholar 

  21. Stelter, P. et al. Coordinated ribosomal L4 protein assembly into the pre-ribosome is regulated by its eukaryote-specific extension. Mol. Cell 58, 854–862 (2015).This study elucidated how an r protein coordinates its chaperone-assisted targeting and incorporation into the assembling preribosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pillet, B. et al. The dedicated chaperone Acl4 escorts ribosomal protein Rpl4 to its nuclear pre-60S assembly site. PLoS Genet. 11, e1005565 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Huber, F.M. & Hoelz, A. Molecular basis for protection of ribosomal protein L4 from cellular degradation. Nat. Commun. 8, 14354 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Granneman, S., Nandineni, M.R. & Baserga, S.J. The putative NTPase Fap7 mediates cytoplasmic 20S pre-rRNA processing through a direct interaction with Rps14. Mol. Cell. Biol. 25, 10352–10364 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hellmich, U.A. et al. Essential ribosome assembly factor Fap7 regulates a hierarchy of RNA-protein interactions during small ribosomal subunit biogenesis. Proc. Natl. Acad. Sci. USA 110, 15253–15258 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Loc'h, J. et al. RNA mimicry by the fap7 adenylate kinase in ribosome biogenesis. PLoS Biol. 12, e1001860 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Peña, C., Schütz, S., Fischer, U., Chang, Y. & Panse, V.G. Prefabrication of a ribosomal protein subcomplex essential for eukaryotic ribosome formation. eLife 5, e21755 (2016).This study describes how the ATPase Fap7 prefabricates a ribosomal protein subcomplex and releases it onto its rRNA-binding site in an energy-dependent manner.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schütz, S. et al. A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly. eLife 3, e03473 (2014).This study identified the first escortin that promotes safe transfer of an r protein to the assembling preribosome.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kornprobst, M. et al. Architecture of the 90S pre-ribosome: a structural view on the birth of the eukaryotic ribosome. Cell 166, 380–393 (2016).These three cryo-EM studies (refs. 29–31) resolved the structure of the 90S pre-ribosome.

    Article  CAS  PubMed  Google Scholar 

  30. Chaker-Margot, M., Barandun, J., Hunziker, M. & Klinge, S. Architecture of the yeast small subunit processome. Science 355, aal1880 (2017).

    Article  CAS  Google Scholar 

  31. Sun, Q. et al. Molecular architecture of the 90S small subunit pre-ribosome. eLife 6, e22086 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ting, Y.H. et al. Bcp1 is the nuclear chaperone of Rpl23 in Saccharomyces cerevisiae. J. Biol. Chem. 292, 585–596 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Poirot, O. & Timsit, Y. Neuron-like networks between ribosomal proteins within the ribosome. Sci. Rep. 6, 26485 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sung, M.K., Reitsma, J.M., Sweredoski, M.J., Hess, S. & Deshaies, R.J. Ribosomal proteins produced in excess are degraded by the ubiquitin-proteasome system. Mol. Biol. Cell 27, 2642–2652 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sung, M.K. et al. A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins. eLife 5, e19105 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Dragon, F. et al. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417, 967–970 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Grandi, P. et al. 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol. Cell 10, 105–115 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Mougey, E.B. et al. The terminal balls characteristic of eukaryotic rRNA transcription units in chromatin spreads are rRNA processing complexes. Genes Dev. 7, 1609–1619 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Neyer, S. et al. Structure of RNA polymerase I transcribing ribosomal DNA genes. Nature 540, 607–610 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Woolford, J.L. Jr. & Baserga, S.J. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195, 643–681 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chaker-Margot, M., Hunziker, M., Barandun, J., Dill, B.D. & Klinge, S. Stage-specific assembly events of the 6-MDa small-subunit processome initiate eukaryotic ribosome biogenesis. Nat. Struct. Mol. Biol. 22, 920–923 (2015).These two studies (refs. 41,42) elucidated the stepwise assembly steps during 90S preribosome formation.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, L., Wu, C., Cai, G., Chen, S. & Ye, K. Stepwise and dynamic assembly of the earliest precursors of small ribosomal subunits in yeast. Genes Dev. 30, 718–732 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hunziker, M. et al. UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly. Nat. Commun. 7, 12090 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gelperin, D., Horton, L., Beckman, J., Hensold, J. & Lemmon, S.K. Bms1p, a novel GTP-binding protein, and the related Tsr1p are required for distinct steps of 40S ribosome biogenesis in yeast. RNA 7, 1268–1283 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wegierski, T., Billy, E., Nasr, F. & Filipowicz, W. Bms1p, a G-domain-containing protein, associates with Rcl1p and is required for 18S rRNA biogenesis in yeast. RNA 7, 1254–1267 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Karbstein, K., Jonas, S. & Doudna, J.A. An essential GTPase promotes assembly of preribosomal RNA processing complexes. Mol. Cell 20, 633–643 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Meyer, B. et al. The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Ψ1191 in yeast 18S rRNA. Nucleic Acids Res. 39, 1526–1537 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Thomas, S.R., Keller, C.A., Szyk, A., Cannon, J.R. & Laronde-Leblanc, N.A. Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis. Nucleic Acids Res. 39, 2445–2457 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Sharma, S. et al. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res. 43, 2242–2258 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bleichert, F., Granneman, S., Osheim, Y.N., Beyer, A.L. & Baserga, S.J. The PINc domain protein Utp24, a putative nuclease, is required for the early cleavage steps in 18S rRNA maturation. Proc. Natl. Acad. Sci. USA 103, 9464–9469 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koš, M. & Tollervey, D. Yeast pre-rRNA processing and modification occur cotranscriptionally. Mol. Cell 37, 809–820 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Talkish, J. et al. Disruption of ribosome assembly in yeast blocks cotranscriptional pre-rRNA processing and affects the global hierarchy of ribosome biogenesis. RNA 22, 852–866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kos-Braun, I.C., Jung, I. & Koš, M. Tor1 and CK2 kinases control a switch between alternative ribosome biogenesis pathways in a growth-dependent manner. PLoS Biol. 15, e2000245 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Schäfer, T., Strauss, D., Petfalski, E., Tollervey, D. & Hurt, E. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. EMBO J. 22, 1370–1380 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schäfer, T. et al. Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature 441, 651–655 (2006).

    Article  PubMed  CAS  Google Scholar 

  56. Strunk, B.S. et al. Ribosome assembly factors prevent premature translation initiation by 40S assembly intermediates. Science 333, 1449–1453 (2011).This cryo-EM study mapped seven late-associating assembly factors on the pre-40S subunit.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Johnson, M.C., Ghalei, H., Doxtader, K.A., Karbstein, K. & Stroupe, M.E. Structural heterogeneity in pre-40S ribosomes. Structure 25, 329–340 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen, W., Xie, Z., Yang, F. & Ye, K. Stepwise assembly of the earliest precursors of large ribosomal subunits in yeast. Nucleic Acids Res. 45, 6837–6847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Konikkat, S. & Woolford, J.L. Jr. Principles of 60S ribosomal subunit assembly emerging from recent studies in yeast. Biochem. J. 474, 195–214 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Bradatsch, B. et al. Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel. Nat. Struct. Mol. Biol. 19, 1234–1241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Leidig, C. et al. 60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle. Nat. Commun. 5, 3491 (2014).

    Article  PubMed  CAS  Google Scholar 

  62. Wu, S. et al. Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes. Nature 534, 133–137 (2016).This cryo-EM study revealed the structure of a nuclear pre-60S particle bound to a large number of assembly factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thoms, M. et al. The exosome is recruited to RNA substrates through specific adaptor proteins. Cell 162, 1029–1038 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Barrio-Garcia, C. et al. Architecture of the Rix1-Rea1 checkpoint machinery during pre-60S-ribosome remodeling. Nat. Struct. Mol. Biol. 23, 37–44 (2016).This cryo-EM study reported the structure of a nuclear pre-60S particle bound to the huge Rix1-Rea1 machinery.

    Article  CAS  PubMed  Google Scholar 

  65. Ulbrich, C. et al. Mechanochemical removal of ribosome biogenesis factors from nascent 60S ribosomal subunits. Cell 138, 911–922 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Matsuo, Y. et al. Coupled GTPase and remodelling ATPase activities form a checkpoint for ribosome export. Nature 505, 112–116 (2014).

    Article  PubMed  CAS  Google Scholar 

  67. Ho, J.H.-N., Kallstrom, G. & Johnson, A.W. Nmd3p is a Crm1p-dependent adapter protein for nuclear export of the large ribosomal subunit. J. Cell Biol. 151, 1057–1066 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gadal, O. et al. Nuclear export of 60s ribosomal subunits depends on Xpo1p and requires a nuclear export sequence-containing factor, Nmd3p, that associates with the large subunit protein Rpl10p. Mol. Cell. Biol. 21, 3405–3415 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma, C. et al. Structural snapshot of cytoplasmic pre-60S ribosomal particles bound by Nmd3, Lsg1, Tif6 and Reh1. Nat. Struct. Mol. Biol. 24, 214–220 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Malyutin, A.G., Musalgaonkar, S., Patchett, S., Frank, J. & Johnson, A.W. Nmd3 is a structural mimic of eIF5A, and activates the cpGTPase Lsg1 during 60S ribosome biogenesis. EMBO J. 36, 854–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Seiser, R.M. et al. Ltv1 is required for efficient nuclear export of the ribosomal small subunit in Saccharomyces cerevisiae. Genetics 174, 679–691 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zemp, I. et al. Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2. J. Cell Biol. 185, 1167–1180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Booth, D.S., Cheng, Y. & Frankel, A.D. The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA. eLife 3, e04121 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fischer, U. et al. A non-canonical mechanism for Crm1-export cargo complex assembly. eLife 4, e05745 (2015).

    Article  PubMed Central  Google Scholar 

  75. Moy, T.I. & Silver, P.A. Requirements for the nuclear export of the small ribosomal subunit. J. Cell Sci. 115, 2985–2995 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Koyama, M., Shirai, N. & Matsuura, Y. Structural insights into how Yrb2p accelerates the assembly of the Xpo1p nuclear export complex. Cell Rep. 9, 983–995 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Faza, M.B., Chang, Y., Occhipinti, L., Kemmler, S. & Panse, V.G. Role of Mex67-Mtr2 in the nuclear export of 40S pre-ribosomes. PLoS Genet. 8, e1002915 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tuck, A.C. & Tollervey, D. A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs. Cell 154, 996–1009 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sarkar, A., Pech, M., Thoms, M., Beckmann, R. & Hurt, E. Ribosome-stalk biogenesis is coupled with recruitment of nuclear-export factor to the nascent 60S subunit. Nat. Struct. Mol. Biol. 23, 1074–1082 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Yao, Y. et al. Ecm1 is a new pre-ribosomal factor involved in pre-60S particle export. RNA 16, 1007–1017 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Altvater, M. et al. Targeted proteomics reveals compositional dynamics of 60S pre-ribosomes after nuclear export. Mol. Syst. Biol. 8, 628 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Pertschy, B. et al. Cytoplasmic recycling of 60S preribosomal factors depends on the AAA protein Drg1. Mol. Cell. Biol. 27, 6581–6592 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kappel, L. et al. Rlp24 activates the AAA-ATPase Drg1 to initiate cytoplasmic pre-60S maturation. J. Cell Biol. 199, 771–782 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Meyer, A.E., Hung, N.J., Yang, P., Johnson, A.W. & Craig, E.A. The specialized cytosolic J-protein, Jjj1, functions in 60S ribosomal subunit biogenesis. Proc. Natl. Acad. Sci. USA 104, 1558–1563 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Meyer, A.E., Hoover, L.A. & Craig, E.A. The cytosolic J-protein, Jjj1, and Rei1 function in the removal of the pre-60 S subunit factor Arx1. J. Biol. Chem. 285, 961–968 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Lo, K.Y. et al. Defining the pathway of cytoplasmic maturation of the 60S ribosomal subunit. Mol. Cell 39, 196–208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Greber, B.J., Boehringer, D., Montellese, C. & Ban, N. Cryo-EM structures of Arx1 and maturation factors Rei1 and Jjj1 bound to the 60S ribosomal subunit. Nat. Struct. Mol. Biol. 19, 1228–1233 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Greber, B.J. et al. Insertion of the biogenesis factor Rei1 probes the ribosomal tunnel during 60S maturation. Cell 164, 91–102 (2016).This cryo-EM study revealed how Rei1 uses its long C terminus to probe the polypeptide exit tunnel of the 60S subunit.

    Article  CAS  PubMed  Google Scholar 

  89. Menne, T.F. et al. The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nat. Genet. 39, 486–495 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Senger, B. et al. The nucle(ol)ar Tif6p and Efl1p are required for a late cytoplasmic step of ribosome synthesis. Mol. Cell 8, 1363–1373 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Weis, F. et al. Mechanism of eIF6 release from the nascent 60S ribosomal subunit. Nat. Struct. Mol. Biol. 22, 914–919 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bussiere, C., Hashem, Y., Arora, S., Frank, J. & Johnson, A.W. Integrity of the P-site is probed during maturation of the 60S ribosomal subunit. J. Cell Biol. 197, 747–759 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ghalei, H. et al. Hrr25/CK1δ-directed release of Ltv1 from pre-40S ribosomes is necessary for ribosome assembly and cell growth. J. Cell Biol. 208, 745–759 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ferreira-Cerca, S. et al. ATPase-dependent role of the atypical kinase Rio2 on the evolving pre-40S ribosomal subunit. Nat. Struct. Mol. Biol. 19, 1316–1323 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ferreira-Cerca, S., Kiburu, I., Thomson, E., LaRonde, N. & Hurt, E. Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes. Nucleic Acids Res. 42, 8635–8647 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. McCaughan, U.M. et al. Pre-40S ribosome biogenesis factor Tsr1 is an inactive structural mimic of translational GTPases. Nat. Commun. 7, 11789 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Strunk, B.S., Novak, M.N., Young, C.L. & Karbstein, K. A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits. Cell 150, 111–121 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lebaron, S. et al. Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nat. Struct. Mol. Biol. 19, 744–753 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Turowski, T.W. et al. Rio1 mediates ATP-dependent final maturation of 40S ribosomal subunits. Nucleic Acids Res. 42, 12189–12199 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to those authors whose work has not been cited due to space limitations. We thank S. Gerhardy and P. Nerurkar for help with figure preparation. V.G.P. is supported by grants from the Swiss National Science Foundation, NCCR RNA & Disease, Novartis Foundation, and Olga Mayenfisch Stiftung and a Starting Grant Award from the European Research Council (EURIBIO260676). E.H. is supported by grants from the German Research Council (DFG; HU363/15-1, HU363/12-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Govind Panse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peña, C., Hurt, E. & Panse, V. Eukaryotic ribosome assembly, transport and quality control. Nat Struct Mol Biol 24, 689–699 (2017). https://doi.org/10.1038/nsmb.3454

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3454

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing