Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

DNA N6-methyladenine in metazoans: functional epigenetic mark or bystander?

Abstract

The DNA-adenine modification N6-methyladenine (6mA), initially thought to be mainly restricted to prokaryotes and certain unicellular eukaryotes, has recently been found in metazoans. Proposed functions vary from gene activation to transposon suppression. However, since most metazoan genomes possess 5-methylcytosine (5mC) as a dominant epigenetic mark, it raises the question of why 6mA is required. This Perspective summarizes the latest discoveries and suggests potential functional roles for 6mA in metazoan genomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 6mA might be regulated in spatiotemporal manners.

Similar content being viewed by others

References

  1. Wiseman, H. & Halliwell, B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J. 313, 17–29 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Klose, R.J. & Bird, A.P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Wion, D. & Casadesús, J. N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat. Rev. Microbiol. 4, 183–192 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gorovsky, M.A., Hattman, S. & Pleger, G.L. (6N)methyl adenine in the nuclear DNA of a eucaryote, Tetrahymena pyriformis . J. Cell Biol. 56, 697–701 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hattman, S. DNA-[adenine] methylation in lower eukaryotes. Biochemistry (Mosc.) 70, 550–558 (2005).

    Article  CAS  Google Scholar 

  6. Ratel, D., Ravanat, J.L., Berger, F. & Wion, D. N6-methyladenine: the other methylated base of DNA. BioEssays 28, 309–315 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vanyushin, B.F., Alexandrushkina, N.I. & Kirnos, M.D. N6-Methyladenine in mitochondrial DNA of higher plants. FEBS Lett. 233, 397–399 (1988).

    Article  CAS  Google Scholar 

  8. Adams, R.L., McKay, E.L., Craig, L.M. & Burdon, R.H. Methylation of mosquito DNA. Biochim. Biophys. Acta 563, 72–81 (1979).

    Article  CAS  PubMed  Google Scholar 

  9. Fedoreyeva, L.I. & Vanyushin, B.F.N. N(6)-Adenine DNA-methyltransferase in wheat seedlings. FEBS Lett. 514, 305–308 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Huang, W. et al. Determination of DNA adenine methylation in genomes of mammals and plants by liquid chromatography/mass spectrometry. RSC Advances 5, 64046–64054 (2015).

    Article  CAS  Google Scholar 

  11. Luo, G.Z., Blanco, M.A., Greer, E.L., He, C. & Shi, Y. DNA N6-methyladenine: a new epigenetic mark in eukaryotes? Nat. Rev. Mol. Cell Biol. 16, 705–710 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fu, Y. et al. N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 161, 879–892 (2015). This work revealed the genomic distribution and functional implications of 6mA in positioning nucleosomes in eukaryotes for the first time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Greer, E.L. et al. DNA methylation on N6-adenine in C. elegans . Cell 161, 868–878 (2015). This work provided comprehensive evidence showing the presence of 6mA in metazoans for the first time. It also implies that 6mA is an inheritable DNA mark.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, G. et al. N6-methyladenine DNA modification in Drosophila . Cell 161, 893–906 (2015). This group discovered 6mA in a metazoan ( Drosophila ) at the same time as the two publications described in refs. 12 and 13 and proposed a potential 6mA demethylase.

    Article  CAS  PubMed  Google Scholar 

  15. O'Brown, Z.K. & Greer, E.L. N6-Methyladenine: a conserved and dynamic DNA mark. Adv. Exp. Med. Biol. 945, 213–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koziol, M.J. et al. Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications. Nat. Struct. Mol. Biol. 23, 24–30 (2016). This work reported the presence of 6mA in vertebrates. It showed very low levels of 6mA that are depleted at transcription start sites.

    Article  CAS  PubMed  Google Scholar 

  17. Wu, T.P. et al. DNA methylation on N6-adenine in mammalian embryonic stem cells. Nature 532, 329–333 (2016). This work studied 6mA in mouse embryonic stem cells by combining antibody-based 6mA enrichment with SMRT sequencing. It showed that 6mA deposition could silence LINE-1 transposons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, J. et al. Abundant DNA 6mA methylation during early embryogenesis of zebrafish and pig. Nat. Commun. 7, 13052 (2016). This work reported a significant elevation of the DNA 6mA level during early embryogenesis of vertebrates. The dynamic changes of 6mA may play critical roles in facilitating early embryo development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pfeifer, G.P. Epigenetics: an elusive DNA base in mammals. Nature 532, 319–320 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Schiffers, S. et al. Quantitative LC-MS provides no evidence for m6dA or m4dC in the genome of mouse embryonic stem cells and tissues. Angew. Chem. Int. Edn Engl. 10.1002/anie.201700424 (2017).

  21. Suzuki, M.M. & Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465–476 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Jones, P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Pratt, K. & Hattman, S. Deoxyribonucleic acid methylation and chromatin organization in Tetrahymena thermophila . Mol. Cell. Biol. 1, 600–608 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bromberg, S., Pratt, K. & Hattman, S. Sequence specificity of DNA adenine methylase in the protozoan Tetrahymena thermophila . J. Bacteriol. 150, 993–996 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Luo, G.Z. et al. Characterization of eukaryotic DNA N(6)-methyladenine by a highly sensitive restriction enzyme-assisted sequencing. Nat. Commun. 7, 11301 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Messerschmidt, D.M., Knowles, B.B. & Solter, D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 28, 812–828 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Smith, Z.D. & Meissner, A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Kohli, R.M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, X. et al. Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex. Nature 534, 575–578 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Śledź, P. & Jinek, M. Structural insights into the molecular mechanism of the m(6)A writer complex. eLife 5, e18434 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yue, Y., Liu, J. & He, C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 29, 1343–1355 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, P., Doxtader, K.A. & Nam, Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol. Cell 63, 306–317 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iyer, L.M., Zhang, D. & Aravind, L. Adenine methylation in eukaryotes: apprehending the complex evolutionary history and functional potential of an epigenetic modification. BioEssays 38, 27–40 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, F. et al. ALKBH1-mediated tRNA demethylation regulates translation. Cell 167, 1897 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Jones, P.L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19, 187–191 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Viré, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).

    Article  PubMed  Google Scholar 

  39. Tsumura, A. et al. Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells 11, 805–814 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Wenzel, D., Palladino, F. & Jedrusik-Bode, M. Epigenetics in C. elegans: facts and challenges. Genesis 49, 647–661 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Tweedie, S. et al. Vestiges of a DNA methylation system in Drosophila melanogaster? Nat. Genet. 23, 389–390 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Heyn, H. & Esteller, M. An adenine code for DNA: a second life for N6-methyladenine. Cell 161, 710–713 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Helbock, H.J. et al. DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc. Natl. Acad. Sci. USA 95, 288–293 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Olarerin-George, A.O. & Hogenesch, J.B. Assessing the prevalence of mycoplasma contamination in cell culture via a survey of NCBI's RNA-seq archive. Nucleic Acids Res. 43, 2535–2542 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hattman, S., Kenny, C., Berger, L. & Pratt, K. Comparative study of DNA methylation in three unicellular eucaryotes. J. Bacteriol. 135, 1156–1157 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Feng, S. et al. Conservation and divergence of methylation patterning in plants and animals. Proc. Natl. Acad. Sci. USA 107, 8689–8694 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, J. et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan He.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, GZ., He, C. DNA N6-methyladenine in metazoans: functional epigenetic mark or bystander?. Nat Struct Mol Biol 24, 503–506 (2017). https://doi.org/10.1038/nsmb.3412

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3412

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing