Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Ribosome origami

Assembly of the small ribosomal subunit from an RNA strand and 33 proteins is an intricate and dynamic process. Two cryo-EM studies now provide insight into a complicated complex of at least 51 trans-factors that act on the preribosomal small subunit to sequentially fold it into a 3D molecular machine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dissecting the small ribosomal subunit processome.

References

  1. Barandun, J. et al. Nat. Struct. Mol. Biol. 24, 944–953 (2017).

    Article  CAS  Google Scholar 

  2. Cheng, J. et al. Nat. Struct. Mol. Biol. 24, 954–964 (2017).

    Article  CAS  Google Scholar 

  3. Sun, Q. et al. eLife 6, e22086 (2017).

    Article  Google Scholar 

  4. Chaker-Margot, M., Hunziker, M., Barandun, J., Dill, B.D. & Klinge, S. Nat. Struct. Mol. Biol. 22, 920–923 (2015).

    Article  CAS  Google Scholar 

  5. Zhang, L., Wu, C., Cai, G., Chen, S. & Ye, K. Genes Dev. 30, 718–732 (2016).

    Article  CAS  Google Scholar 

  6. Hunziker, M. et al. Nat. Commun. 7, 12090 (2016).

    Article  CAS  Google Scholar 

  7. Chaker-Margot, M., Barandun, J., Hunziker, M. & Klinge, S. Science 355, aal1880 (2017)

    Article  Google Scholar 

  8. Kornprobst, M. et al. Cell 166, 380–393 (2016).

    Article  CAS  Google Scholar 

  9. Kellner, N. et al. Sci. Rep. 6, 20937 (2016).

    Article  CAS  Google Scholar 

  10. Wu, S. et al. Nature 534, 133–137 (2016).

    Article  CAS  Google Scholar 

  11. Leidig, C. et al. Nat. Commun. 5, 3491 (2014).

    Article  Google Scholar 

  12. Greber, B.J. et al. Cell 164, 91–102 (2016).

    Article  CAS  Google Scholar 

  13. Barrio-Garcia, C. et al. Nat. Struct. Mol. Biol. 23, 37–44 (2016).

    Article  CAS  Google Scholar 

  14. Brown, A. et al. Nat. Struct. Mol. Biol. 24, 866–869 (2017).

    Article  CAS  Google Scholar 

  15. Udem, S.A. & Warner, J.R. J. Biol. Chem. 248, 1412–1416 (1973).

    CAS  PubMed  Google Scholar 

  16. Trapman, J., Retèl, J. & Planta, R.J. Exp. Cell Res. 90, 95–104 (1975).

    Article  CAS  Google Scholar 

  17. Grandi, P. et al. Mol. Cell 10, 105–115 (2002).

    Article  CAS  Google Scholar 

  18. Dragon, F. et al. Nature 417, 967–970 (2002).

    Article  CAS  Google Scholar 

  19. Bernstein, K.A., Gallagher, J.E., Mitchell, B.M., Granneman, S. & Baserga, S.J. Eukaryot. Cell 3, 1619–1626 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Amunts.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rorbach, J., Aibara, S. & Amunts, A. Ribosome origami. Nat Struct Mol Biol 24, 879–881 (2017). https://doi.org/10.1038/nsmb.3497

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3497

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing