Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

TERRA and the state of the telomere

Abstract

Long noncoding telomeric repeat–containing RNA (TERRA) has been implicated in telomere maintenance in a telomerase-dependent and a telomerase-independent manner during replicative senescence and cancer. TERRA's proposed activities are diverse, thus making it difficult to pinpoint the critical roles that TERRA may have. We propose that TERRA orchestrates different activities at chromosome ends in a manner that depends on the state of the telomere.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation and removal of TERRA R loops at telomeres.
Figure 2: Cell cycle–dependent interplay of TERRA activity and H3K9me3.
Figure 3: TERRA activity and telomere state.

Similar content being viewed by others

References

  1. Morris, K.V. & Mattick, J.S. The rise of regulatory RNA. Nat. Rev. Genet. 15, 423–437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Caudron-Herger, M. & Rippe, K. Nuclear architecture by RNA. Curr. Opin. Genet. Dev. 22, 179–187 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Luke, B. & Lingner, J. TERRA: telomeric repeat-containing RNA. EMBO J. 28, 2503–2510 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Luke, B. et al. The Rat1p 5′ to 3′ exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Mol. Cell 32, 465–477 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Schoeftner, S. & Blasco, M.A. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat. Cell Biol. 10, 228–236 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Porro, A., Feuerhahn, S., Reichenbach, P. & Lingner, J. Molecular dissection of telomeric repeat-containing RNA biogenesis unveils the presence of distinct and multiple regulatory pathways. Mol. Cell. Biol. 30, 4808–4817 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arnoult, N., Van Beneden, A. & Decottignies, A. Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1α. Nat. Struct. Mol. Biol. 19, 948–956 (2012).TERRA establishes a feedback loop and negatively regulates its own transcription through the establishment of silent heterochromatin at long telomeres.

    Article  CAS  PubMed  Google Scholar 

  8. Flynn, R.L. et al. Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science 347, 273–277 (2015).TERRA removal from telomeres during G2-M is ATRX dependent and is defective in ALT cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. López de Silanes, I. et al. Identification of TERRA locus unveils a telomere protection role through association to nearly all chromosomes. Nat. Commun. 5, 4723 (2014).

    Article  PubMed  CAS  Google Scholar 

  10. Azzalin, C.M. & Lingner, J. Telomere functions grounding on TERRA firma. Trends Cell Biol. 25, 29–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Maicher, A., Lockhart, A. & Luke, B. Breaking new ground: digging into TERRA function. Biochim. Biophys. Acta 1839, 387–394 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Cusanelli, E. & Chartrand, P. Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity. Front. Genet. 6, 143 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ng, L.J., Cropley, J.E., Pickett, H.A., Reddel, R.R. & Suter, C.M. Telomerase activity is associated with an increase in DNA methylation at the proximal subtelomere and a reduction in telomeric transcription. Nucleic Acids Res. 37, 1152–1159 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Episkopou, H. et al. Alternative Lengthening of Telomeres is characterized by reduced compaction of telomeric chromatin. Nucleic Acids Res. 42, 4391–4405 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yehezkel, S., Segev, Y., Viegas-Pequignot, E., Skorecki, K. & Selig, S. Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum. Mol. Genet. 17, 2776–2789 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Deng, Z. et al. A role for CTCF and cohesin in subtelomere chromatin organization, TERRA transcription, and telomere end protection. EMBO J. 31, 4165–4178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feuerhahn, S., Iglesias, N., Panza, A., Porro, A. & Lingner, J. TERRA biogenesis, turnover and implications for function. FEBS Lett. 584, 3812–3818 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Costantino, L. & Koshland, D. The Yin and Yang of R-loop biology. Curr. Opin. Cell Biol. 34, 39–45 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wahba, L., Gore, S.K. & Koshland, D. The homologous recombination machinery modulates the formation of RNA-DNA hybrids and associated chromosome instability. eLife 2, e00505 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Balk, B. et al. Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. Nat. Struct. Mol. Biol. 20, 1199–1205 (2013).RNA-DNA hybrids promote telomere recombination in telomerase-negative senescent cells.

    Article  CAS  PubMed  Google Scholar 

  21. Pfeiffer, V., Crittin, J., Grolimund, L. & Lingner, J. The THO complex component Thp2 counteracts telomeric R-loops and telomere shortening. EMBO J. 32, 2861–2871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arora, R. et al. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat. Commun. 5, 5220 (2014).TERRA RNA-DNA hybrids promote recombination-mediated elongation in human ALT cancer cells.

    Article  CAS  PubMed  Google Scholar 

  23. Yu, T.Y., Kao, Y.W. & Lin, J.J. Telomeric transcripts stimulate telomere recombination to suppress senescence in cells lacking telomerase. Proc. Natl. Acad. Sci. USA 111, 3377–3382 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aguilera, A. & Garcia-Muse, T. R loops: from transcription byproducts to threats to genome stability. Mol. Cell 46, 115–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Gan, W. et al. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev. 25, 2041–2056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fallet, E. et al. Length-dependent processing of telomeres in the absence of telomerase. Nucleic Acids Res. 42, 3648–3665 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cusanelli, E., Romero, C.A. & Chartrand, P. Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres. Mol. Cell 51, 780–791 (2013).TERRA recruits telomerase at short telomeres from nontelomeric TERRA-telomerase clusters.

    Article  CAS  PubMed  Google Scholar 

  28. Porro, A. et al. Functional characterization of the TERRA transcriptome at damaged telomeres. Nat. Commun. 5, 5379 (2014).TERRA associates with the SUV39H1 H3K9 methyltransferase, and loss of TRF2 leads to an increase of TERRA expression accompanied by H3K9me3 accumulation.

    Article  CAS  PubMed  Google Scholar 

  29. Lovejoy, C.A. et al. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet. 8, e1002772 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chawla, R. et al. Human UPF1 interacts with TPP1 and telomerase and sustains telomere leading-strand replication. EMBO J. 30, 4047–4058 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Azzalin, C.M., Reichenbach, P., Khoriauli, L., Giulotto, E. & Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798–801 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Drané, P., Ouararhni, K., Depaux, A., Shuaib, M. & Hamiche, A. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev. 24, 1253–1265 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Saksouk, N. et al. Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation. Mol. Cell 56, 580–594 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. De La Fuente, R., Baumann, C. & Viveiros, M.M. ATRX contributes to epigenetic asymmetry and silencing of major satellite transcripts in the maternal genome of the mouse embryo. Development 142, 1806–1817 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goldberg, A.D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678–691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Law, M.J. et al. ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner. Cell 143, 367–378 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Stuckey, R., Garcia-Rodriguez, N., Aguilera, A. & Wellinger, R.E. Role for RNA:DNA hybrids in origin-independent replication priming in a eukaryotic system. Proc. Natl. Acad. Sci. USA 112, 5779–5784 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sfeir, A. et al. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138, 90–103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. López de Silanes, I., Stagno d'Alcontres, M. & Blasco, M.A. TERRA transcripts are bound by a complex array of RNA-binding proteins. Nat. Commun. 1, 33 (2010).

    Article  PubMed  CAS  Google Scholar 

  40. Ishikawa, F., Matunis, M.J., Dreyfuss, G. & Cech, T.R. Nuclear proteins that bind the pre-mRNA 3′ splice site sequence r(UUAG/G) and the human telomeric DNA sequence d(TTAGGG)n. Mol. Cell. Biol. 13, 4301–4310 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Deng, Z., Norseen, J., Wiedmer, A., Riethman, H. & Lieberman, P.M. TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol. Cell 35, 403–413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scheibe, M. et al. Quantitative interaction screen of telomeric repeat-containing RNA reveals novel TERRA regulators. Genome Res. 23, 2149–2157 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. García-Cao, M., O'Sullivan, R., Peters, A.H., Jenuwein, T. & Blasco, M.A. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat. Genet. 36, 94–99 (2004).

    Article  PubMed  CAS  Google Scholar 

  44. Müller-Ott, K. et al. Specificity, propagation, and memory of pericentric heterochromatin. Mol. Syst. Biol. 10, 746 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Mallm, J.P. & Rippe, K. Aurora kinase B regulates telomerase activity via a centromeric RNA in stem cells. Cell Reports 11, 1667–1678 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Muramatsu, D., Singh, P.B., Kimura, H., Tachibana, M. & Shinkai, Y. Pericentric heterochromatin generated by HP1 protein interaction-defective histone methyltransferase Suv39h1. J. Biol. Chem. 288, 25285–25296 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Elsässer, S.J., Noh, K.M., Diaz, N., Allis, C.D. & Banaszynski, L.A. Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature 522, 240–244 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Sadic, D. et al. Atrx promotes heterochromatin formation at retrotransposons. EMBO Rep. 16, 836–850 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Voon, H.P. et al. ATRX plays a key role in maintaining silencing at interstitial heterochromatic loci and imprinted genes. Cell Reports 11, 405–418 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Eustermann, S. et al. Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin. Nat. Struct. Mol. Biol. 18, 777–782 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Iwase, S. et al. ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome. Nat. Struct. Mol. Biol. 18, 769–776 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Caslini, C., Connelly, J.A., Serna, A., Broccoli, D. & Hess, J.L. MLL associates with telomeres and regulates telomeric repeat-containing RNA transcription. Mol. Cell. Biol. 29, 4519–4526 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Porro, A., Feuerhahn, S. & Lingner, J. TERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeres. Cell Reports 6, 765–776 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Fischle, W. et al. Regulation of HP1–chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Mateescu, B., England, P., Halgand, F., Yaniv, M. & Muchardt, C. Tethering of HP1 proteins to chromatin is relieved by phosphoacetylation of histone H3. EMBO Rep. 5, 490–496 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liokatis, S. et al. Phosphorylation of histone H3 Ser10 establishes a hierarchy for subsequent intramolecular modification events. Nat. Struct. Mol. Biol. 19, 819–823 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Chang, F.T. et al. CHK1-driven histone H3.3 serine 31 phosphorylation is important for chromatin maintenance and cell survival in human ALT cancer cells. Nucleic Acids Res. 43, 2603–2614 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Castellano-Pozo, M. et al. R loops are linked to histone H3 S10 phosphorylation and chromatin condensation. Mol. Cell 52, 583–590 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Robin, J.D. et al. Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances. Genes Dev. 28, 2464–2476 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Nadal-Ribelles, M. et al. Control of Cdc28 CDK1 by a stress-induced lncRNA. Mol. Cell 53, 549–561 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lai, F. et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494, 497–501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Napier, C.E. et al. ATRX represses alternative lengthening of telomeres. Oncotarget 6, 16543–16558 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Clynes, D. et al. Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX. Nat. Commun. 6, 7538 (2015).

    Article  PubMed  Google Scholar 

  64. Levy, M.A., Kernohan, K.D., Jiang, Y. & Berube, N.G. ATRX promotes gene expression by facilitating transcriptional elongation through guanine-rich coding regions. Hum. Mol. Genet. 24, 1824–1835 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Eid, R. et al. Genetic inactivation of ATRX leads to a decrease in the amount of telomeric cohesin and of telomere transcription in human glioma cells. Mol. Cell. Biol. 35, 2818–2830 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Osterwald, S. et al. PML induces compaction, TRF2 depletion and DNA damage signaling at telomeres and promotes their alternative lengthening. J. Cell Sci. 128, 1887–1900 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Wong, L.H. et al. ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res. 20, 351–360 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge C. Azzalin, K. Deeg, M. Graf and D. Bonetti for critical reading of the manuscript. B.L. and K.R. were supported by project CancerTelSys (grant 01ZX1302) in the E:med program of the German Federal Ministry of Education and Research (BMBF) and by a collaboration grant on noncoding RNAs from the German CellNetworks Cluster of Excellence (EXC81).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karsten Rippe or Brian Luke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rippe, K., Luke, B. TERRA and the state of the telomere. Nat Struct Mol Biol 22, 853–858 (2015). https://doi.org/10.1038/nsmb.3078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3078

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing