Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins

Subjects

Abstract

Autophagy complements the ubiquitin-proteasome system in mediating protein turnover. Whereas the proteasome degrades individual proteins modified with ubiquitin chains, autophagy degrades many proteins and organelles en masse. Macromolecules destined for autophagic degradation are 'selected' through sequestration within a specialized double-membrane compartment termed the phagophore, the precursor to an autophagosome, and then are hydrolyzed in a lysosome- or vacuole-dependent manner. Notably, a pair of distinctive ubiquitin-like proteins (UBLs), Atg8 and Atg12, regulate degradation by autophagy in unique ways by controlling autophagosome biogenesis and recruitment of specific cargos during selective autophagy. Here we review structural mechanisms underlying the functions and conjugation of these UBLs that are specialized to provide interaction platforms linked to phagophore membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology of macroautophagy and location and functions of UBL Atg proteins.
Figure 2: Cargo recognition and packaging in selective macroautophagy.
Figure 3: Structural basis for Atg8-interacting motif (AIM) and LC3-interacting region (LIR) binding to ubiquitin-like protein Atg8 and orthologs.
Figure 4: Structural basis for Atg8 (LC3) processing and deconjugation.
Figure 5: Selected structures of autophagy UBL ligation enzymes.

Similar content being viewed by others

References

  1. Yang, Z. & Klionsky, D.J. Eaten alive: a history of macroautophagy. Nat. Cell Biol. 12, 814–822 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Reggiori, F. & Klionsky, D.J. Autophagic processes in yeast: mechanism, machinery and regulation. Genetics 194, 341–361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mijaljica, D. et al. Receptor protein complexes are in control of autophagy. Autophagy 8, 1701–1705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oku, M. & Sakai, Y. Peroxisomes as dynamic organelles: autophagic degradation. FEBS J. 277, 3289–3294 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Kanki, T., Klionsky, D.J. & Okamoto, K. Mitochondria autophagy in yeast. Antioxid. Redox Signal. 14, 1989–2001 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Youle, R.J. & Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Knodler, L.A. & Celli, J. Eating the strangers within: host control of intracellular bacteria via xenophagy. Cell. Microbiol. 13, 1319–1327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Geng, J. & Klionsky, D.J. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. EMBO Rep. 9, 859–864 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492 (2000).Identifies the Atg8–PE conjugation system.

    Article  CAS  PubMed  Google Scholar 

  10. Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 (1998).Identifies the Atg12–Atg5 conjugation system.

    Article  CAS  PubMed  Google Scholar 

  11. Weidberg, H. et al. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 29, 1792–1802 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xie, Z., Nair, U. & Klionsky, D.J. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 19, 3290–3298 (2008).Shows that Atg8 levels correlate with the size of autophagosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakatogawa, H., Ichimura, Y. & Ohsumi, Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130, 165–178 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Nair, U. et al. SNARE proteins are required for macroautophagy. Cell 146, 290–302 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nair, U. et al. A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy 8, 780–793 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shintani, T., Huang, W.-P., Stromhaug, P.E. & Klionsky, D.J. Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev. Cell 3, 825–837 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hanada, T. et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol. Chem. 282, 37298–37302 (2007).Identifies the Atg12–Atg5 complex as a new E3 ligase promoting Atg8 lipidation.

    Article  CAS  PubMed  Google Scholar 

  18. Kuma, A., Mizushima, N., Ishihara, N. & Ohsumi, Y. Formation of the approximately 350-kDa Apg12-Apg5•Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem. 277, 18619–18625 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Fujita, N. et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 19, 2092–2100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kraft, C. et al. Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J. 31, 3691–3703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Noda, N.N., Ohsumi, Y. & Inagaki, F. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 584, 1379–1385 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Noda, N.N. et al. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13, 1211–1218 (2008).Refs. 22 and 44 identify the structural basis for AIM or LIR binding to Atg8 (LC3) UBLs.

    Article  CAS  PubMed  Google Scholar 

  23. Behrends, C., Sowa, M.E., Gygi, S.P. & Harper, J.W. Network organization of the human autophagy system. Nature 466, 68–76 (2010).A proteomic analysis of Atg8 (LC3) family–interacting proteins, suggesting the complexity of the autophagy network.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Noda, N.N. et al. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol. Cell 44, 462–475 (2011).Refs. 24, 69 and 70 revealed mechanisms by which Atg7 initiates conjugation of autophagy UBLs.

    Article  CAS  PubMed  Google Scholar 

  25. Satoo, K. et al. The structure of Atg4B–LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J. 28, 1341–1350 (2009).Revealed the structural mechanisms underlying ATG4-dependent processing and deconjugation of LC3 family members.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Suzuki, H. et al. Structural basis of the autophagy-related LC3/Atg13 LIR complex: recognition and interaction mechanism. Structure 22, 47–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Pankiv, S. et al. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J. Cell Biol. 188, 253–269 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seillier, M. et al. TP53INP1, a tumor suppressor, interacts with LC3 and ATG8-family proteins through the LC3-interacting region (LIR) and promotes autophagy-dependent cell death. Cell Death Differ. 19, 1525–1535 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Colecchia, D. et al. MAPK15/ERK8 stimulates autophagy by interacting with LC3 and GABARAP proteins. Autophagy 8, 1724–1740 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Popovic, D. et al. Rab GTPase-activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers. Mol. Cell. Biol. 32, 1733–1744 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nowak, J. et al. The TP53INP2 protein is required for autophagy in mammalian cells. Mol. Biol. Cell 20, 870–881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Birgisdottir, Å.B., Lamark, T. & Johansen, T. The LIR motif: crucial for selective autophagy. J. Cell Sci. 126, 3237–3247 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Lynch-Day, M.A. & Klionsky, D.J. The Cvt pathway as a model for selective autophagy. FEBS Lett. 584, 1359–1366 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kanki, T., Wang, K., Cao, Y., Baba, M. & Klionsky, D.J. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 17, 98–109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Okamoto, K., Kondo-Okamoto, N. & Ohsumi, Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17, 87–97 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Motley, A.M., Nuttall, J.M. & Hettema, E.H. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J. 31, 2852–2868 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shaid, S., Brandts, C.H., Serve, H. & Dikic, I. Ubiquitination and selective autophagy. Cell Death Differ. 20, 21–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Kirkin, V. et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505–516 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Thurston, T.L., Ryzhakov, G., Bloor, S., von Muhlinen, N. & Randow, F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10, 1215–1221 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Johansen, T. & Lamark, T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 7, 279–296 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Korac, J. et al. Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J. Cell Sci. 126, 580–592 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Jiang, S., Wells, C.D. & Roach, P.J. Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem. Biophys. Res. Commun. 413, 420–425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ichimura, Y. et al. Structural basis for sorting mechanism of p62 in selective autophagy. J. Biol. Chem. 283, 22847–22857 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Rozenknop, A. et al. Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1. J. Mol. Biol. 410, 477–487 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Kaufmann, A., Beier, V., Franquelim, H.G. & Wollert, T. Molecular mechanism of autophagic membrane-scaffold assembly and disassembly. Cell 156, 469–481 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Birmingham, C.L., Smith, A.C., Bakowski, M.A., Yoshimori, T. & Brumell, J.H. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J. Biol. Chem. 281, 11374–11383 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Thurston, T.L., Wandel, M.P., von Muhlinen, N., Foeglein, A. & Randow, F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414–418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. von Muhlinen, N. et al. LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol. Cell 48, 329–342 (2012).Revealed basis for LC3C specificity toward a CLIR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228–233 (2011).Refs. 50 and 51 demonstrated phosphorylation-dependent recruitment of cargo to Atg8 (LC3) family members.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rogov, V.V. et al. Structural basis for phosphorylation-triggered autophagic clearance of Salmonella. Biochem. J. 454, 459–466 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Weiergräber, O.H. et al. Ligand binding mode of GABAA receptor-associated protein. J. Mol. Biol. 381, 1320–1331 (2008).

    Article  PubMed  CAS  Google Scholar 

  53. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Kirisako, T. et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J. Cell Biol. 151, 263–276 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, M. et al. Kinetics comparisons of mammalian Atg4 homologues indicate selective preferences toward diverse Atg8 substrates. J. Biol. Chem. 286, 7327–7338 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hemelaar, J., Lelyveld, V.S., Kessler, B.M. & Ploegh, H.L. A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1–LC3, GABARAP, and Apg8L. J. Biol. Chem. 278, 51841–51850 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Kabeya, Y. et al. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci. 117, 2805–2812 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Mariño, G. et al. Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. J. Biol. Chem. 278, 3671–3678 (2003).

    Article  PubMed  CAS  Google Scholar 

  60. Tanida, I., Ueno, T. & Kominami, E. Human light chain 3/MAP1LC3B is cleaved at its carboxyl-terminal Met121 to expose Gly120 for lipidation and targeting to autophagosomal membranes. J. Biol. Chem. 279, 47704–47710 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Yu, Z.Q. et al. Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy 8, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kumanomidou, T. et al. The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome-forming modifiers. J. Mol. Biol. 355, 612–618 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Sugawara, K. et al. Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy. J. Biol. Chem. 280, 40058–40065 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Sakoh-Nakatogawa, M. et al. Atg12–Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Nat. Struct. Mol. Biol. 20, 433–439 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Noda, N.N., Fujioka, Y., Hanada, T., Ohsumi, Y. & Inagaki, F. Structure of the Atg12–Atg5 conjugate reveals a platform for stimulating Atg8–PE conjugation. EMBO Rep. 14, 206–211 (2013).Refs. 65 and 79 revealed the structure of the Atg12–Atg5 conjugate.

    Article  CAS  PubMed  Google Scholar 

  66. Radoshevich, L. et al. ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 142, 590–600 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tanida, I. et al. Apg7p/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol. Biol. Cell 10, 1367–1379 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schulman, B.A. & Harper, J.W. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 10, 319–331 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Taherbhoy, A.M. et al. Atg8 transfer from Atg7 to Atg3: a distinctive E1–E2 architecture and mechanism in the autophagy pathway. Mol. Cell 44, 451–461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hong, S.B. et al. Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat. Struct. Mol. Biol. 18, 1323–1330 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Kaiser, S.E. et al. Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7–Atg3 and Atg7–Atg10 structures. Nat. Struct. Mol. Biol. 19, 1242–1249 (2012).Refs. 71 and 72 revealed mechanisms of Atg7 interactions with the autophagy E2s Atg3 and Atg10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yamaguchi, M. et al. Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat. Struct. Mol. Biol. 19, 1250–1256 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Komatsu, M. et al. The C-terminal region of an Apg7p/Cvt2p is required for homodimerization and is essential for its E1 activity and E1–E2 complex formation. J. Biol. Chem. 276, 9846–9854 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Hong, S.B., Kim, B.W., Kim, J.H. & Song, H.K. Structure of the autophagic E2 enzyme Atg10. Acta Crystallogr. D Biol. Crystallogr. 68, 1409–1417 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Yamada, Y. et al. The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J. Biol. Chem. 282, 8036–8043 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Yamaguchi, M. et al. Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Structure 20, 1244–1254 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Cao, Y., Cheong, H., Song, H. & Klionsky, D.J. In vivo reconstitution of autophagy in Saccharomyces cerevisiae. J. Cell Biol. 182, 703–713 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Romanov, J. et al. Mechanism and functions of membrane binding by the Atg5–Atg12/Atg16 complex during autophagosome formation. EMBO J. 31, 4304–4317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Otomo, C., Metlagel, Z., Takaesu, G. & Otomo, T. Structure of the human ATG12ATG5 conjugate required for LC3 lipidation in autophagy. Nat. Struct. Mol. Biol. 20, 59–66 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Metlagel, Z., Otomo, C., Takaesu, G. & Otomo, T. Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12. Proc. Natl. Acad. Sci. USA 110, 18844–18849 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brownell, J.E. et al. Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Mol. Cell 37, 102–111 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Boada-Romero, E. et al. TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3. EMBO J. 32, 566–582 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Travassos, L.H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11, 55–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Nakagawa, I. et al. Autophagy defends cells against invading group A Streptococcus. Science 306, 1037–1040 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Hwang, S. et al. Nondegradative role of Atg5-Atg12/ Atg16L1 autophagy protein complex in antiviral activity of interferon gamma. Cell Host Microbe 11, 397–409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cadwell, K., Patel, K.K., Komatsu, M., Virgin, H.W. IV & Stappenbeck, T.S. A common role for Atg16L1, Atg5 and Atg7 in small intestinal Paneth cells and Crohn disease. Autophagy 5, 250–252 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Tanji, K., Mori, F., Kakita, A., Takahashi, H. & Wakabayashi, K. Alteration of autophagosomal proteins (LC3, GABARAP and GATE-16) in Lewy body disease. Neurobiol. Dis. 43, 690–697 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Chen, D. et al. Genetic analysis of the ATG7 gene promoter in sporadic Parkinson’s disease. Neurosci. Lett. 534, 193–198 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Chen, D. et al. A novel and functional variant within the ATG5 gene promoter in sporadic Parkinson’s disease. Neurosci. Lett. 538, 49–53 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Metzger, S. et al. Age at onset in Huntington’s disease is modified by the autophagy pathway: implication of the V471A polymorphism in Atg7. Hum. Genet. 128, 453–459 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425–434 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ding, W.X. et al. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology 139, 1740–1752 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Takamura, A. et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25, 795–800 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).Refs. 94 and 95 show that neuron-specific loss of ATG5 or ATG7 leads to neurodegeneration.

    Article  CAS  PubMed  Google Scholar 

  95. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Masiero, E. et al. Autophagy is required to maintain muscle mass. Cell Metab. 10, 507–515 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Raben, N. et al. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum. Mol. Genet. 17, 3897–3908 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Rioux, J.D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596–604 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Novak, I. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45–51 (2010).Refs. 102 and 103 show that BNIP3L (Nix) is a mitophagy receptor that binds LC3.

    Article  CAS  PubMed  Google Scholar 

  103. Sandoval, H. et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232–235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Tsukamoto, S. et al. Autophagy is essential for preimplantation development of mouse embryos. Science 321, 117–120 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Mortensen, M. et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J. Exp. Med. 208, 455–467 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kitamura, K. et al. Autophagy-related Atg8 localizes to the apicoplast of the human malaria parasite Plasmodium falciparum. PLoS ONE 7, e42977 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Scherz-Shouval, R. et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26, 1749–1760 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nair, U., Cao, Y., Xie, Z. & Klionsky, D.J. Roles of the lipid-binding motifs of Atg18 and Atg21 in the cytoplasm to vacuole targeting pathway and autophagy. J. Biol. Chem. 285, 11476–11488 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Thompson, A.R., Doelling, J.H., Suttangkakul, A. & Vierstra, R.D. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol. 138, 2097–2110 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mizushima, N. et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell Biol. 152, 657–668 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hain, A.U.P. et al. Structural characterization and inhibition of the Plasmodium Atg8-Atg3 interaction. J. Struct. Biol. 180, 551–562 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yamaguchi, M. et al. Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J. Biol. Chem. 285, 29599–29607 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Martinez, J. et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc. Natl. Acad. Sci. USA 108, 17396–17401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ishibashi, K., Uemura, T., Waguri, S. & Fukuda, M. Atg16L1, an essential factor for canonical autophagy, participates in hormone secretion from PC12 cells independently of autophagic activity. Mol. Biol. Cell 23, 3193–3202 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yousefi, S. et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat. Cell Biol. 8, 1124–1132 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Lee, I. & Schindelin, H. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 134, 268–278 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Kaiser, M. Yamaguchi and Y. Qiu for helpful comments. The Klionsky laboratory is supported by US National Institutes of Health (NIH) grant 2R01GM053396. Research on autophagy in the Schulman laboratory is supported by the American Lebanese Syrian Associated Charities, the Howard Hughes Medical Institute, the St. Jude Cancer Center grant 5P30CA021765 and NIH grant R01GM077053.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klionsky, D., Schulman, B. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat Struct Mol Biol 21, 336–345 (2014). https://doi.org/10.1038/nsmb.2787

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2787

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing