Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of signal sequence surveillance and selection by the SRP–FtsY complex

Abstract

Signal-recognition particle (SRP)-dependent targeting of translating ribosomes to membranes is a multistep quality-control process. Ribosomes that are translating weakly hydrophobic signal sequences can be rejected from the targeting reaction even after they are bound to the SRP. Here we show that the early complex, formed by Escherichia coli SRP and its receptor FtsY with ribosomes translating the incorrect cargo EspP, is unstable and rearranges inefficiently into subsequent conformational states, such that FtsY dissociation is favored over successful targeting. The N-terminal extension of EspP is responsible for these defects in the early targeting complex. The cryo-electron microscopy structure of this 'false' early complex with EspP revealed an ordered M domain of SRP protein Ffh making two ribosomal contacts, and the NG domains of Ffh and FtsY forming a distorted, flexible heterodimer. Our results provide a structural basis for SRP-mediated signal-sequence selection during recruitment of the SRP receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The N-terminal extension of EspP inhibits co-translational protein targeting but does not affect RNC–SRP binding.
Figure 2: The EspP N-terminal extension leads to a weaker and distorted early targeting complex.
Figure 3: M-domain arrangement during co-translational targeting.
Figure 4: Ffh–FtsY NG-domain arrangement in the 'false' early complex formed with EspP compared to the productive early complex formed with a correct cargo.
Figure 5: The N-terminal extension leads to a less productive early complex and slower assembly of the closed SRP–FtsY complex.
Figure 6: Model of signal sequence surveillance by the SRP and FtsY.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Protein Data Bank

Referenced accessions

Electron Microscopy Data Bank

References

  1. Gilmore, R., Walter, P. & Blobel, G. Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor. J. Cell Biol. 95, 470–477 (1982).

    Article  CAS  Google Scholar 

  2. Keenan, R.J., Freymann, D.M., Stroud, R.M. & Walter, P. The signal recognition particle. Annu. Rev. Biochem. 70, 755–775 (2001).

    Article  CAS  Google Scholar 

  3. Nagai, K. et al. Structure, function and evolution of the signal recognition particle. EMBO J. 22, 3479–3485 (2003).

    Article  CAS  Google Scholar 

  4. Doudna, J.A. & Batey, R.T. Structural insights into the signal recognition particle. Annu. Rev. Biochem. 73, 539–557 (2004).

    Article  CAS  Google Scholar 

  5. Poritz, M.A. et al. An E. coli ribonucleoprotein containing 4.5S RNA resembles mammalian signal recognition particle. Science 250, 1111–1117 (1990).

    Article  CAS  Google Scholar 

  6. Freymann, D.M., Keenan, R.J., Stroud, R.M. & Walter, P. Structure of the conserved GTPase domain of the signal recognition particle. Nature 385, 361–364 (1997).

    Article  CAS  Google Scholar 

  7. Batey, R.T., Rambo, R.P., Lucast, L., Rha, B. & Doudna, J.A. Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287, 1232–1239 (2000).

    Article  CAS  Google Scholar 

  8. Janda, C.Y. et al. Recognition of a signal peptide by the signal recognition particle. Nature 465, 507–510 (2010).

    Article  CAS  Google Scholar 

  9. Hainzl, T., Huang, S., Merilainen, G., Brannstrom, K. & Sauer-Eriksson, A.E. Structural basis of signal-sequence recognition by the signal recognition particle. Nat. Struct. Mol. Biol. 18, 389–391 (2011).

    Article  CAS  Google Scholar 

  10. Montoya, G., Svensson, C., Luirink, J. & Sinning, I. Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Nature 385, 365–368 (1997).

    Article  CAS  Google Scholar 

  11. Angelini, S., Deitermann, S. & Koch, H.G. FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon. EMBO Rep. 6, 476–481 (2005).

    Article  CAS  Google Scholar 

  12. Weiche, B. et al. A cleavable N-terminal membrane anchor is involved in membrane binding of the Escherichia coli SRP receptor. J. Mol. Biol. 377, 761–773 (2008).

    Article  CAS  Google Scholar 

  13. Egea, P.F. et al. Substrate twinning activates the signal recognition particle and its receptor. Nature 427, 215–221 (2004).

    Article  CAS  Google Scholar 

  14. Focia, P.J., Shepotinovskaya, I.V., Seidler, J.A. & Freymann, D.M. Heterodimeric GTPase core of the SRP targeting complex. Science 303, 373–377 (2004).

    Article  CAS  Google Scholar 

  15. Zhang, X., Rashid, R., Wang, K. & Shan, S.O. Sequential checkpoints govern substrate selection during cotranslational protein targeting. Science 328, 757–760 (2010).

    Article  CAS  Google Scholar 

  16. Holtkamp, W. et al. Dynamic switch of the signal recognition particle from scanning to targeting. Nat. Struct. Mol. Biol. 19, 1332–1337 (2012).

    Article  CAS  Google Scholar 

  17. Halic, M. et al. Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 444, 507–511 (2006).

    Article  CAS  Google Scholar 

  18. Peluso, P., Shan, S.O., Nock, S., Herschlag, D. & Walter, P. Role of SRP RNA in the GTPase cycles of Ffh and FtsY. Biochemistry 40, 15224–15233 (2001).

    Article  CAS  Google Scholar 

  19. Zhang, X., Schaffitzel, C., Ban, N. & Shan, S.O. Multiple conformational switches in a GTPase complex control co-translational protein targeting. Proc. Natl. Acad. Sci. USA 106, 1754–1759 (2009).

    Article  CAS  Google Scholar 

  20. Estrozi, L.F., Boehringer, D., Shan, S.O., Ban, N. & Schaffitzel, C. Structure of the E. coli co-translational targeting complex in the stable early conformation. Nat. Struct. Mol. Biol. 18, 88–90 (2011).

    Article  CAS  Google Scholar 

  21. Lam, V.Q., Akopian, D., Rome, M., Henningsen, D. & Shan, S.O. Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting. J. Cell Biol. 190, 623–635 (2010).

    Article  CAS  Google Scholar 

  22. Shen, K., Arslan, S., Akopian, D., Ha, T. & Shan, S.O. Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature 492, 271–275 (2012).

    Article  CAS  Google Scholar 

  23. Ataide, S.F. et al. The crystal structure of the signal recognition particle in complex with its receptor. Science 331, 881–886 (2011).

    Article  CAS  Google Scholar 

  24. Connolly, T., Rapiejko, P. & Gilmore, R. Requirement of GTP hydrolysis for dissociation of the signal recognition particle from its receptor. Science 252, 1171–1173 (1991).

    Article  CAS  Google Scholar 

  25. Tian, H., Boyd, D. & Beckwith, J. A mutant hunt for defects in membrane protein assembly yields mutations affecting the bacterial signal recognition particle and Sec machinery. Proc. Natl. Acad. Sci. USA 97, 4730–4735 (2000).

    Article  CAS  Google Scholar 

  26. Valent, Q.A. et al. Early events in preprotein recognition in E. coli: interaction of SRP and trigger factor with nascent polypeptides. EMBO J. 14, 5494–5505 (1995).

    Article  CAS  Google Scholar 

  27. Lee, H.C. & Bernstein, H.D. The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal. Proc. Natl. Acad. Sci. USA 98, 3471–3476 (2001).

    Article  CAS  Google Scholar 

  28. Peterson, J.H., Szabady, R.L. & Bernstein, H.D. An unusual signal peptide extension inhibits the binding of bacterial presecretory proteins to the signal recognition particle, trigger factor, and the SecYEG complex. J. Biol. Chem. 281, 9038–9048 (2006).

    Article  CAS  Google Scholar 

  29. Szabady, R.L., Peterson, J.H., Skillman, K.M. & Bernstein, H.D. An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. Proc. Natl. Acad. Sci. USA 102, 221–226 (2005).

    Article  CAS  Google Scholar 

  30. Schuwirth, B.S. et al. Structures of the bacterial ribosome at 3.5 A resolution. Science 310, 827–834 (2005).

    Article  CAS  Google Scholar 

  31. Rosendal, K.R., Wild, K., Montoya, G. & Sinning, I. Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication. Proc. Natl. Acad. Sci. USA 100, 14701–14706 (2003).

    Article  CAS  Google Scholar 

  32. Schaffitzel, C. et al. Structure of the E. coli signal recognition particle bound to a translating ribosome. Nature 444, 503–506 (2006).

    Article  CAS  Google Scholar 

  33. Powers, T. & Walter, P. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J. 16, 4880–4886 (1997).

    Article  CAS  Google Scholar 

  34. Shan, S.O., Chandrasekar, S. & Walter, P. Conformational changes in the GTPase modules of the signal reception particle and its receptor drive initiation of protein translocation. J. Cell Biol. 178, 611–620 (2007).

    Article  CAS  Google Scholar 

  35. Zhang, X., Kung, S. & Shan, S.O. Demonstration of a multistep mechanism for assembly of the SRP x SRP receptor complex: implications for the catalytic role of SRP RNA. J. Mol. Biol. 381, 581–593 (2008).

    Article  CAS  Google Scholar 

  36. Braig, D. et al. Signal sequence-independent SRP-SR complex formation at the membrane suggests an alternative targeting pathway within the SRP cycle. Mol. Biol. Cell 22, 2309–2323 (2011).

    Article  CAS  Google Scholar 

  37. Shen, K. & Shan, S.O. Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting. Proc. Natl. Acad. Sci. USA 107, 7698–7703 (2010).

    Article  CAS  Google Scholar 

  38. Scheres, S.H. et al. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat. Methods 4, 27–29 (2007).

    Article  CAS  Google Scholar 

  39. Shaikh, T.R. et al. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat. Protoc. 3, 1941–1974 (2008).

    Article  CAS  Google Scholar 

  40. Zhang, X. et al. Direct visualization reveals dynamics of a transient intermediate during protein assembly. Proc. Natl. Acad. Sci. USA 108, 6450–6455 (2011).

    Article  CAS  Google Scholar 

  41. Knoops, K., Schoehn, G. & Schaffitzel, C. Cryo-electron microscopy of ribosomal complexes in cotranslational folding, targeting, and translocation. Wiley Interdiscip. Rev. RNA 3, 429–441 (2012).

    Article  CAS  Google Scholar 

  42. Cross, B.C., Sinning, I., Luirink, J. & High, S. Delivering proteins for export from the cytosol. Nat. Rev. Mol. Cell Biol. 10, 255–264 (2009).

    Article  CAS  Google Scholar 

  43. Bradshaw, N., Neher, S.B., Booth, D.S. & Walter, P. Signal sequences activate the catalytic switch of SRP RNA. Science 323, 127–130 (2009).

    Article  CAS  Google Scholar 

  44. Peterson, J.H., Woolhead, C.A. & Bernstein, H.D. The conformation of a nascent polypeptide inside the ribosome tunnel affects protein targeting and protein folding. Mol. Microbiol. 78, 203–217 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Raine, A. et al. Targeting and insertion of heterologous membrane proteins in E. coli. Biochimie 85, 659–668 (2003).

    Article  CAS  Google Scholar 

  46. Flanagan, J.J. et al. Signal recognition particle binds to ribosome-bound signal sequences with fluorescence-detected subnanomolar affinity that does not diminish as the nascent chain lengthens. J. Biol. Chem. 278, 18628–18637 (2003).

    Article  CAS  Google Scholar 

  47. Miyazaki, E., Kida, Y., Mihara, K. & Sakaguchi, M. Switching the sorting mode of membrane proteins from cotranslational endoplasmic reticulum targeting to posttranslational mitochondrial import. Mol. Biol. Cell 16, 1788–1799 (2005).

    Article  CAS  Google Scholar 

  48. del Alamo, M. et al. Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes. PLoS Biol. 9, e1001100 (2011).

    Article  CAS  Google Scholar 

  49. Lauring, B., Sakai, H., Kreibich, G. & Wiedmann, M. Nascent polypeptide-associated complex protein prevents mistargeting of nascent chains to the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 92, 5411–5415 (1995).

    Article  CAS  Google Scholar 

  50. Schaffitzel, C. & Ban, N. Generation of ribosome nascent chain complexes for structural and functional studies. J. Struct. Biol. 158, 463–471 (2007).

    Article  CAS  Google Scholar 

  51. Heymann, J.B. & Belnap, D.M. Bsoft: image processing and molecular modeling for electron microscopy. J. Struct. Biol. 157, 3–18 (2007).

    Article  CAS  Google Scholar 

  52. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article  CAS  Google Scholar 

  53. Valle, M. et al. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat. Struct. Biol. 10, 899–906 (2003).

    Article  CAS  Google Scholar 

  54. Valle, M. et al. Locking and unlocking of ribosomal motions. Cell 114, 123–134 (2003).

    Article  CAS  Google Scholar 

  55. Fischer, N., Konevega, A.L., Wintermeyer, W., Rodnina, M.V. & Stark, H. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466, 329–333 (2010).

    Article  CAS  Google Scholar 

  56. Rosenthal, P.B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article  CAS  Google Scholar 

  57. Scheres, S.H., Nunez-Ramirez, R., Sorzano, C.O., Carazo, J.M. & Marabini, R. Image processing for electron microscopy single-particle analysis using XMIPP. Nat. Protoc. 3, 977–990 (2008).

    Article  CAS  Google Scholar 

  58. Penczek, P.A., Kimmel, M. & Spahn, C.M. Identifying conformational states of macromolecules by eigen-analysis of resampled cryo-EM images. Structure 19, 1582–1590 (2011).

    Article  CAS  Google Scholar 

  59. Pettersen, E.F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  60. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Shaikh for advice with Spider refinement, P. Penczek for assistance with SPARX, M. Bacia for excellent technical assistance and members of the protein expression facility at European Molecular Biology Laboratory Heidelberg as well as the Partnership for Structural Biology in Grenoble for support. The Polara microscope is part of the Structural Biology and Dynamics Groupement d'intérêt scientifique–Infrastrutures en Biologie Sante et Agronomie platform of the Institut de Biologie Structurale. C.S. acknowledges support by the Agence Nationale de la Recherche (ANR-09-JCJC-0044), the region Rhône-Alpes (CIBLE_1976) and the European Research Council Starting grant (project 281331). K.K. was supported by a postdoctoral European Molecular Biology Organization fellowship. We thank I. Saraogi in the Shan laboratory for sharing unpublished results and for critical reading of the manuscript. S.S. is supported by US National Institutes of Health grant R01 GM078024, and the Fellowship for science and engineering from the David and Lucile Packard foundation. A.A. was supported by the US National Institute of General Medical Sciences Ruth L. Kirschstein National Research Service Award (F31GM095294) and the National Institutes of Health National Research Service Award Training grant 5T32GM07616. X.Z. is supported by the Howard Hughes Medical Institute Fellowship of the Helen Hay Whitney Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.S., I.B., X.Z. and S.S. designed experiments; C.S., K.H., O.v.L., A.A. and X.Z. prepared samples; A.A. and X.Z. carried out biochemical experiments; K.K., G.S. and M.K. performed the electron microscopy; O.v.L., M.K. and C.S. performed image analysis and model building; C.S., O.v.L., A.A., X.Z. and S.S. prepared the manuscript.

Corresponding authors

Correspondence to Shu-ou Shan or Christiane Schaffitzel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 3052 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Loeffelholz, O., Knoops, K., Ariosa, A. et al. Structural basis of signal sequence surveillance and selection by the SRP–FtsY complex. Nat Struct Mol Biol 20, 604–610 (2013). https://doi.org/10.1038/nsmb.2546

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2546

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing