Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic selection designed to stabilize proteins uncovers a chaperone called Spy

Abstract

To optimize the in vivo folding of proteins, we linked protein stability to antibiotic resistance, thereby forcing bacteria to effectively fold and stabilize proteins. When we challenged Escherichia coli to stabilize a very unstable periplasmic protein, it massively overproduced a periplasmic protein called Spy, which increases the steady-state levels of a set of unstable protein mutants up to 700-fold. In vitro studies demonstrate that the Spy protein is an effective ATP-independent chaperone that suppresses protein aggregation and aids protein refolding. Our strategy opens up new routes for chaperone discovery and the custom tailoring of the in vivo folding environment. Spy forms thin, apparently flexible cradle-shaped dimers. The structure of Spy is unlike that of any previously solved chaperone, making it the prototypical member of a new class of small chaperones that facilitate protein refolding in the absence of energy cofactors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A dual fusion selection for enhancing in vivo protein stability.
Figure 2: Overall experimental scheme.
Figure 3: Im7 and Spy are abundant in the periplasm of EMS strains.
Figure 4: Spy has chaperone activity.
Figure 5: Spy protects DsbB, aldolase and alkaline phosphatase from tannic acid–induced activity loss.
Figure 6: Crystal structure of the Spy dimer shown in three orientations rotated by 90° along the vertical axis.
Figure 7: Spy binds the disordered model substrate protein casein and the in vivo substrate protein Im7-L53A I54A.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Kerner, M.J. et al. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122, 209–220 (2005).

    Article  CAS  Google Scholar 

  2. Duguay, A.R. & Silhavy, T.J. Quality control in the bacterial periplasm. Biochim. Biophys. Acta 1694, 121–134 (2004).

    Article  CAS  Google Scholar 

  3. Foit, L. et al. Optimizing protein stability in vivo. Mol. Cell 36, 861–871 (2009).

    Article  CAS  Google Scholar 

  4. Stafford, S.J., Humphreys, D.P. & Lund, P.A. Mutations in dsbA and dsbB, but not dsbC, lead to an enhanced sensitivity of Escherichia coli to Hg2+ and Cd2+. FEMS Microbiol. Lett. 174, 179–184 (1999).

    Article  CAS  Google Scholar 

  5. De Pascale, G. & Wright, G.D. Antibiotic resistance by enzyme inactivation: from mechanisms to solutions. ChemBioChem 11, 1325–1334 (2010).

    Article  CAS  Google Scholar 

  6. Spence, G.R., Capaldi, A.P. & Radford, S.E. Trapping the on-pathway folding intermediate of Im7 at equilibrium. J. Mol. Biol. 341, 215–226 (2004).

    Article  CAS  Google Scholar 

  7. Raffa, R.G. & Raivio, T.L. A third envelope stress signal transduction pathway in Escherichia coli. Mol. Microbiol. 45, 1599–1611 (2002).

    Article  CAS  Google Scholar 

  8. MacRitchie, D.M., Buelow, D.R., Price, N.L. & Raivio, T.L. Two-component signaling and gram negative envelope stress response systems. Adv. Exp. Med. Biol. 631, 80–110 (2008).

    Article  CAS  Google Scholar 

  9. Bury-Moné, S. et al. Global analysis of extracytoplasmic stress signaling in Escherichia coli. PLoS Genet. 5, e1000651 (2009).

    Article  Google Scholar 

  10. Price, N.L. & Raivio, T.L. Characterization of the Cpx regulon in Escherichia coli strain MC4100. J. Bacteriol. 191, 1798–1815 (2009).

    Article  CAS  Google Scholar 

  11. Raivio, T.L., Laird, M.W., Joly, J.C. & Silhavy, T.J. Tethering of CpxP to the inner membrane prevents spheroplast induction of the cpx envelope stress response. Mol. Microbiol. 37, 1186–1197 (2000).

    Article  CAS  Google Scholar 

  12. Hartl, F.U. & Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16, 574–581 (2009).

    Article  CAS  Google Scholar 

  13. Winter, J. & Jakob, U. Beyond transcription—new mechanisms for the regulation of molecular chaperones. Crit. Rev. Biochem. Mol. Biol. 39, 297–317 (2004).

    Article  CAS  Google Scholar 

  14. Zoetendal, E.G., Smith, A.H., Sundset, M.A. & Mackie, R.I. The BaeSR two-component regulatory system mediates resistance to condensed tannins in Escherichia coli. Appl. Environ. Microbiol. 74, 535–539 (2008).

    Article  CAS  Google Scholar 

  15. Scalbert, A. Antimicrobial properties of tannins. Phytochemistry 30, 3875–3883 (1991).

    Article  CAS  Google Scholar 

  16. Hernes, P.J. et al. Tannin diagenesis in mangrove leaves from a tropical estuary: A novel molecular approach. Geochim. Cosmochim. Acta 65, 3109–3122 (2001).

    Article  CAS  Google Scholar 

  17. Smith, A.H. & Mackie, R.I. Effect of condensed tannins on bacterial diversity and metabolic activity in the rat gastrointestinal tract. Appl. Environ. Microbiol. 70, 1104–1115 (2004).

    Article  CAS  Google Scholar 

  18. Serrano, J., Puupponen-Pimia, R., Dauer, A., Aura, A.M. & Saura-Calixto, F. Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol. Nutr. Food Res. 53, S310–S329 (2009).

    Article  Google Scholar 

  19. Howell, A.B., Vorsa, N., Marderosian, A.D. & Foo, L.Y. Inhibition of the adherence of P-fimbriated Escherichia coli to uroepithelial-cell surfaces by proanthocyanidin extracts from cranberries. N. Engl. J. Med. 339, 1085–1086 (1998).

    Article  CAS  Google Scholar 

  20. Zanchi, D. et al. Tannin-assisted aggregation of natively unfolded proteins. Europhys. Lett. 82, 58001 (2008).

    Article  Google Scholar 

  21. Hofmann, T. et al. Protein binding and astringent taste of a polymeric procyanidin, 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose, castalagin, and grandinin. J. Agric. Food Chem. 54, 9503–9509 (2006).

    Article  CAS  Google Scholar 

  22. Ono, K., Hasegawa, K., Naiki, H. & Yamada, M. Anti-amyloidogenic activity of tannic acid and its activity to destabilize Alzheimer's β-amyloid fibrils in vitro. Biochim. Biophys. Acta 1690, 193–202 (2004).

    Article  CAS  Google Scholar 

  23. Kim, W. et al. A high-throughput screen for compounds that inhibit aggregation of the Alzheimer's peptide. ACS Chem. Biol. 1, 461–469 (2006).

    Article  CAS  Google Scholar 

  24. Lee, L.L., Ha, H., Chang, Y.T. & DeLisa, M.P. Discovery of amyloid-β aggregation inhibitors using an engineered assay for intracellular protein folding and solubility. Protein Sci. 18, 277–286 (2009).

    Article  CAS  Google Scholar 

  25. Raivio, T.L., Popkin, D.L. & Silhavy, T.J. The Cpx envelope stress response is controlled by amplification and feedback inhibition. J. Bacteriol. 181, 5263–5272 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Danese, P.N. & Silhavy, T.J. CpxP, a stress-combative member of the Cpx regulon. J. Bacteriol. 180, 831–839 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. DiGiuseppe, P.A. & Silhavy, T.J. Signal detection and target gene induction by the CpxRA two-component system. J. Bacteriol. 185, 2432–2440 (2003).

    Article  CAS  Google Scholar 

  28. Isaac, D.D., Pinkner, J.S., Hultgren, S.J. & Silhavy, T.J. The extracytoplasmic adaptor protein CpxP is degraded with substrate by DegP. Proc. Natl. Acad. Sci. USA 102, 17775–17779 (2005).

    Article  CAS  Google Scholar 

  29. Kwon, E., Kim, D.Y., Gross, C.A., Gross, J.D. & Kim, K.K. The crystal structure Escherichia coli Spy. Protein Sci. 19, 2252–2259 (2010).

    Article  CAS  Google Scholar 

  30. Powl, A.M., Wright, J.N., East, J.M. & Lee, A.G. Identification of the hydrophobic thickness of a membrane protein using fluorescence spectroscopy: Studies with the mechanosensitive channel MscL. Biochemistry 44, 5713–5721 (2005).

    Article  CAS  Google Scholar 

  31. Tapley, T.L. et al. Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding. Proc. Natl. Acad. Sci. USA 106, 5557–5562 (2009).

    Article  CAS  Google Scholar 

  32. Brynildsen, M.P. & Liao, J.C. An integrated network approach identifies the isobutanol response network of Escherichia coli. Mol. Syst. Biol. 5, 277 (2009); doi:10.1038/msb.2009.34.

    PubMed  Google Scholar 

  33. Rutherford, B.J. et al. Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl. Environ. Microbiol. 76, 1935–1945 (2010).

    Article  CAS  Google Scholar 

  34. Miyawaki, O. & Tatsuno, M. Thermodynamic analysis of alcohol effect on thermal stability of proteins. J. Biosci. Bioeng. 111, 198–203 (2011).

    Article  CAS  Google Scholar 

  35. Neidhardt, F.C., VanBogelen, R.A. & Vaughn, V. The genetics and regulation of heat-shock proteins. Annu. Rev. Genet. 18, 295–329 (1984).

    Article  CAS  Google Scholar 

  36. Neidhardt, F.C. et al. Identity of the B56.5 protein, the A-protein, and the groE gene product of Escherichia coli. J. Bacteriol. 145, 513–520 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. McNulty, B.C., Young, G.B. & Pielak, G.J. Macromolecular crowding in the Escherichia coli periplasm maintains α-synuclein disorder. J. Mol. Biol. 355, 893–897 (2006).

    Article  CAS  Google Scholar 

  38. Tapley, T.L., Franzmann, T.M., Chakraborty, S., Jakob, U. & Bardwell, J.C.A. Protein refolding by pH-triggered chaperone binding and release. Proc. Natl. Acad. Sci. USA 107, 1071–1076 (2010).

    Article  CAS  Google Scholar 

  39. Miller, J.H. in A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria (Cold Spring Harbor Laboratory Press, Woodbury, NY, 1992).

  40. Hiniker, A. & Bardwell, J.C.A. In vivo substrate specificity of periplasmic disulfide oxidoreductases. J. Biol. Chem. 279, 12967–12973 (2004).

    Article  CAS  Google Scholar 

  41. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  42. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007).

    CAS  Google Scholar 

  43. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  44. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  45. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  46. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Morgan and S. Radford for communicating results before publication and for the Im7-L53A I54A protein, T. Franzmann for conducting the ultracentrifugation experiments, D. Reichmann, C. Cremers and A. Malik for advice, M. Lei and Y. Chen for providing vector and reagents for Spy purification and C. Munger for initial purification and crystallization of Spy. Protein identification was done by the Protein Structure Facility at the University of Michigan. Diffraction data were collected at the Canadian Macromolecular Crystallography Facility-1 beamline at the Canadian Light Source. We would like to thank S. Labiuk for data collection. The Howard Hughes Medical Institute funded this work (to J.C.A.B). M.C. acknowledges financial support from Canadian Institutes of Health Research grant GSP-48370.

Author information

Authors and Affiliations

Authors

Contributions

J.C.A.B. designed the study and wrote the manuscript, with contributions from M.C. and S.Q. S.Q., P.K., T.T., N.K., K.M.R., R.S., J.P., S.H. and G.R. conducted the experiments and collected and analyzed the data. J.C.A.B., Z.X. and M.C. further analyzed the data. L.F. and U.J. provided technical support and conceptual advice.

Corresponding author

Correspondence to James C A Bardwell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1 and Supplementary Methods (PDF 2160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quan, S., Koldewey, P., Tapley, T. et al. Genetic selection designed to stabilize proteins uncovers a chaperone called Spy. Nat Struct Mol Biol 18, 262–269 (2011). https://doi.org/10.1038/nsmb.2016

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2016

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing