Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A shared structural solution for neutralizing ebolaviruses

Abstract

Sudan virus (genus Ebolavirus) is lethal, yet no monoclonal antibody is known to neutralize it. We here describe antibody 16F6 that neutralizes Sudan virus and present its structure bound to the trimeric viral glycoprotein. Unexpectedly, the 16F6 epitope overlaps that of KZ52, the only other antibody against the GP1,2 core to be visualized to date. Furthermore, both antibodies against this crucial epitope bridging GP1–GP2 neutralize at a post-internalization step—probably fusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of Sudan virus (SUDV) GP1,2 in complex with Fab 16F6.
Figure 2: Surfaces of SUDV GP.
Figure 3: 16F6 epitope.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Sanchez, A. & Rollin, P.E. Virus Res. 113, 16–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Okware, S.I. et al. Trop. Med. Int. Health 7, 1068–1075 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Maruyama, T. et al. J. Infect. Dis. 179 Suppl 1, S235–S239 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Takada, A. et al. J. Virol. 77, 1069–1074 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wilson, J.A. et al. Science 287, 1664–1666 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Shahhosseini, S. et al. J. Virol. Methods 143, 29–37 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Yu, J.S. et al. J. Virol. Methods 137, 219–228 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Volchkov, V.E., Feldmann, H., Volchkova, V.A. & Klenk, H.D. Proc. Natl. Acad. Sci. USA 95, 5762–5767 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jeffers, S.A., Sanders, D.A. & Sanchez, A. J. Virol. 76, 12463–12472 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dube, D. et al. J. Virol. 83, 2883–2891 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hood, C.L. et al. J. Virol. 84, 2972–2982 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee, J.E., Fusco, M.L., Hessell, A.H., Burton, D.R. & Saphire, E.O. Acta Crystallogr. D 65, 1162–1180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, J.E. et al. Nature 454, 177–182 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Halfmann, P. et al. Proc. Natl. Acad. Sci. USA 105, 1129–1133 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chandran, K., Sullivan, N.J., Felbor, U., Whelan, S.P. & Cunningham, J.M. Science 308, 1643–1645 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schornberg, K. et al. J. Virol. 80, 4174–4178 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weissenhorn, W., Carfi, A., Lee, K.H., Skehel, J.J. & Wiley, D.C. Mol. Cell 2, 605–616 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Malashkevich, V.N. et al. Proc. Natl. Acad. Sci. USA 96, 2662–2667 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ekiert, D.C. et al. Science 324, 246–251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sui, J. et al. Nat. Struct. Mol. Biol. 16, 265–273 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Burton and A. Hessell (The Scripps Research Institute, TSRI) for KZ52, M. Whitt (University of Tennessee Health Science Center) and D. Lyles (Wake Forest University School of Medicine) for anti-VSV IgG 23H12, J. Cunningham (Brigham and Women's Hospital) for rabbit anti-GP1 polyclonal antibody and I. Wilson of TSRI for critical reading of the manuscript. We would also like to thank C. Corbaci (TSRI) for assistance in figure preparation and the staff of the Advanced Photon Source Beamline 19-ID and the Advanced Light Source Beamlines 8.2.2 and 8.3.1 for assistance and for the use of their US Department of Energy–supported facilities. E.O.S. wishes to acknowledge US National Institutes of Health (NIH) grant U01 AI070530, the Skaggs Institute for Chemical Biology, a Career Award in the Biomedical Sciences and an Investigator in the Pathogenesis of Infectious Disease Award from the Burroughs Welcome Fund. K.C. acknowledges support from NIH grants R01 AI088027 and R21 AI082437 and from institutional funds of the Albert Einstein College of Medicine. A.C.W. was supported by NIH training grants T32 GM007288 and T32 AI070117. Y.K. acknowledges support from NIH R01 AI055519 and membership within and support from the Region V 'Great Lakes' Regional Center for Excellence for Biodefense and Emerging Infectious Diseases Research (RCE) Program (NIH award 2 U54 AI057153). J.M. Dye wishes to acknowledge support from the Defense Threat Reduction Agency (DTRA K.K0001_07_RD_B). Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the US Army.

Author information

Authors and Affiliations

Authors

Contributions

J.M. Dias determined the crystal structure, S.B. continued refinement and M.L.F. engineered SUDV GP1,2 for crystallization. A.I.K., E.K., S.E.Z., M.A.M. and J.M. Dye raised 16F6 and designed and conducted BSL-4 neutralization and protection experiments. D.M.A., E.O.S., A.C.W. and K.C. designed and carried out cathepsin cleavage and VSIV neutralization experiments. D.M.A., E.O.S., P.H. and Y.K. designed and conducted attachment and entry experiments. J.M. Dias, J.M. Dye, D.M.A., S.B., A.K., K.C., P.H., Y.K. and E.O.S. analyzed results. J.M. Dye, K.C., Y.K. and E.O.S. supervised the research. J.M. Dias, J.M. Dye and E.O.S. wrote the manuscript.

Corresponding authors

Correspondence to John M Dye or Erica Ollmann Saphire.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1 and Supplementary Methods (PDF 2193 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, J., Kuehne, A., Abelson, D. et al. A shared structural solution for neutralizing ebolaviruses. Nat Struct Mol Biol 18, 1424–1427 (2011). https://doi.org/10.1038/nsmb.2150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing