Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loqs and R2D2 act sequentially in the siRNA pathway in Drosophila

Abstract

In Drosophila melanogaster, the small interfering RNA (siRNA) pathway is triggered by exogenous double-stranded RNA (dsRNA) or upon viral infection. This pathway requires Dicer-2 (Dcr-2) in association with a dsRNA-binding protein (dsRBP) called R2D2. A potentially distinct siRNA pathway, which requires Dcr-2 in association with a different dsRBP, called Loquacious (Loqs), is activated by endogenous dsRNA derived from transposons, structured loci and overlapping transcripts. Here we show that different sources of dsRNA enter a common siRNA pathway that requires R2D2 and Loqs. R2D2 and loqs mutants show impaired silencing triggered by injection of exogenous dsRNA or by artificial and natural expression of endogenous dsRNA. In addition, we show that these dsRBPs function sequentially and nonredundantly in collaboration with Dcr-2. Loqs is primarily required for dsRNA processing, whereas R2D2 is essential for the subsequent loading of siRNAs into effector Ago–RISC complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: R2D2 and Loqs are required for silencing triggered by dsRNA from endogenous or exogenous sources.
Figure 2: R2D2 and Loqs are required at different steps of the siRNA pathway.
Figure 3: R2D2 and Loqs are required in the endogenous siRNA pathway.
Figure 4: Requirements of R2D2 and Loqs for silencing of transposable elements (TEs).
Figure 5: The impact of Loqs and R2D2 on miRNAs.
Figure 6: The siRNA pathway in Drosophila.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Carthew, R.W. & Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    Article  CAS  Google Scholar 

  2. Liu, X. et al. Dicer-1, but not Loquacious, is critical for assembly of miRNA-induced silencing complexes. RNA 13, 2324–2329 (2007).

    Article  CAS  Google Scholar 

  3. Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921–1925 (2003).

    Article  CAS  Google Scholar 

  4. Pham, J.W., Pellino, J.L., Lee, Y.S., Carthew, R.W. & Sontheimer, E.J. A Dicer-2-dependent 80S complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117, 83–94 (2004).

    Article  CAS  Google Scholar 

  5. Chung, W.J., Okamura, K., Martin, R. & Lai, E.C. Endogenous RNA interference provides a somatic defense against Drosophila transposons. Curr. Biol. 18, 795–802 (2008).

    Article  CAS  Google Scholar 

  6. Czech, B. et al. An endogenous small interfering RNA pathway in Drosophila. Nature 453, 798–802 (2008).

    Article  CAS  Google Scholar 

  7. Ghildiyal, M. et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320, 1077–1081 (2008).

    Article  CAS  Google Scholar 

  8. Kawamura, Y. et al. Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature 453, 793–797 (2008).

    Article  CAS  Google Scholar 

  9. Okamura, K., Balla, S., Martin, R., Liu, N. & Lai, E.C. Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nat. Struct. Mol. Biol. 15, 581–590 (2008).

    Article  CAS  Google Scholar 

  10. Okamura, K. et al. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 453, 803–806 (2008).

    Article  CAS  Google Scholar 

  11. Tam, O.H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538 (2008).

    Article  CAS  Google Scholar 

  12. Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539–543 (2008).

    Article  CAS  Google Scholar 

  13. Ambros, V., Lee, R.C., Lavanway, A., Williams, P.T. & Jewell, D. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr. Biol. 13, 807–818 (2003).

    Article  CAS  Google Scholar 

  14. Pak, J. & Fire, A. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315, 241–244 (2007).

    Article  CAS  Google Scholar 

  15. Ghildiyal, M. & Zamore, P.D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94–108 (2009).

    Article  CAS  Google Scholar 

  16. Okamura, K. & Lai, E.C. Endogenous small interfering RNAs in animals. Nat. Rev. Mol. Cell Biol. 9, 673–678 (2008).

    Article  CAS  Google Scholar 

  17. Zhou, R. et al. Processing of Drosophila endo-siRNAs depends on a specific Loquacious isoform. RNA 15, 1886–1895 (2009).

    Article  CAS  Google Scholar 

  18. Liu, X., Jiang, F., Kalidas, S., Smith, D. & Liu, Q. Dicer-2 and R2D2 coordinately bind siRNA to promote assembly of the siRISC complexes. RNA 12, 1514–1520 (2006).

    Article  CAS  Google Scholar 

  19. Tomari, Y., Matranga, C., Haley, B., Martinez, N. & Zamore, P.D. A protein sensor for siRNA asymmetry. Science 306, 1377–1380 (2004).

    Article  CAS  Google Scholar 

  20. Wang, X.H. et al. RNA interference directs innate immunity against viruses in adult Drosophila. Science 312, 452–454 (2006).

    Article  CAS  Google Scholar 

  21. Saleh, M.C. et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat. Cell Biol. 8, 793–802 (2006).

    Article  CAS  Google Scholar 

  22. Ulvila, J. et al. Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells. J. Biol. Chem. 281, 14370–14375 (2006).

    Article  CAS  Google Scholar 

  23. Zhou, R. et al. Comparative analysis of Argonaute-dependent small RNA pathways in Drosophila. Mol. Cell 32, 592–599 (2008).

    Article  CAS  Google Scholar 

  24. Dorner, S. et al. A genomewide screen for components of the RNAi pathway in Drosophila cultured cells. Proc. Natl. Acad. Sci. USA 103, 11880–11885 (2006).

    Article  CAS  Google Scholar 

  25. Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M.C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666 (2004).

    Article  CAS  Google Scholar 

  26. Lee, Y.S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81 (2004).

    Article  CAS  Google Scholar 

  27. Park, J.K., Liu, X., Strauss, T.J., McKearin, D.M. & Liu, Q. The miRNA pathway intrinsically controls self-renewal of Drosophila germline stem cells. Curr. Biol. 17, 533–538 (2007).

    Article  CAS  Google Scholar 

  28. Förstemann, K. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 3, e236 (2005).

    Article  Google Scholar 

  29. Kennerdell, J.R., Yamaguchi, S. & Carthew, R.W. RNAi is activated during Drosophila oocyte maturation in a manner dependent on Aubergine and spindle-E. Genes Dev. 16, 1884–1889 (2002).

    Article  CAS  Google Scholar 

  30. Pham, J.W. & Sontheimer, E.J. Molecular requirements for RNA-induced silencing complex assembly in the Drosophila RNA interference pathway. J. Biol. Chem. 280, 39278–39283 (2005).

    Article  CAS  Google Scholar 

  31. Jiang, F. et al. Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev. 19, 1674–1679 (2005).

    Article  CAS  Google Scholar 

  32. Horwich, M.D. et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol. 17, 1265–1272 (2007).

    Article  CAS  Google Scholar 

  33. Li, J., Yang, Z., Yu, B., Liu, J. & Chen, X. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr. Biol. 15, 1501–1507 (2005).

    Article  CAS  Google Scholar 

  34. Stapleton, M. et al. The Drosophila gene collection: identification of putative full-length cDNAs for 70% of D. melanogaster genes. Genome Res. 12, 1294–1300 (2002).

    Article  Google Scholar 

  35. Malone, C.D. & Hannon, G.J. Small RNAs as guardians of the genome. Cell 136, 656–668 (2009).

    Article  CAS  Google Scholar 

  36. Provost, P. et al. Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J. 21, 5864–5874 (2002).

    Article  CAS  Google Scholar 

  37. Tomari, Y., Du, T. & Zamore, P.D. Sorting of Drosophila small silencing RNAs. Cell 130, 299–308 (2007).

    Article  CAS  Google Scholar 

  38. Kok, K.H., Ng, M.H., Ching, Y.P. & Jin, D.Y. Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA. J. Biol. Chem. 282, 17649–17657 (2007).

    Article  CAS  Google Scholar 

  39. Lu, C., Meyers, B.C. & Green, P.J. Construction of small RNA cDNA libraries for deep sequencing. Methods 43, 110–117 (2007).

    Article  Google Scholar 

  40. Pall, G.S., Codony-Servat, C., Byrne, J., Ritchie, L. & Hamilton, A. Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucleic Acids Res. 35, e60 (2007).

    Article  Google Scholar 

  41. Tuschl, T., Zamore, P.D., Lehmann, R., Bartel, D.P. & Sharp, P.A. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 13, 3191–3197 (1999).

    Article  CAS  Google Scholar 

  42. Fahlgren, N. et al. Computational and analytical framework for small RNA profiling by high-throughput sequencing. RNA 15, 992–1002 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Reinke, Y. Bei and Carthew laboratory members for valuable discussion; F. Valsecchi for help with bioinformatics; C. Horvath, E. Sontheimer and J. Brickner (Northwestern University) for sharing equipment and reagents; P. Zamore (University of Massachusetts Medical School) for loqsf00791; M. Siomi (Keio University School of Medicine) for ago2414 stocks; Q. Liu (University of Texas Southwestern Medical Center) for R2D21 and loqsKO stocks and G. Hannon (Cold Spring Harbor Laboratory) for anti-Loqs antibody. This work was supported by a grant from the US National Institutes of Health (GM68743) to R.W.C.

Author information

Authors and Affiliations

Authors

Contributions

J.T.M. and K.K. conceived and designed the experiments; J.T.M., K.K., P.-H.W., T.M.A. and N.J. performed the experiments; J.T.M., K.K. and R.W.C. analyzed the data; J.T.M. and R.W.C. wrote the paper.

Corresponding author

Correspondence to Richard W Carthew.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 2354 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, J., Kim, K., Wu, PH. et al. Loqs and R2D2 act sequentially in the siRNA pathway in Drosophila. Nat Struct Mol Biol 17, 24–30 (2010). https://doi.org/10.1038/nsmb.1735

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1735

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing