Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Cellular mechanisms of membrane protein folding

Abstract

The membrane protein–folding problem can be articulated by two central questions. How is protein topology established by selective peptide transport to opposite sides of the cellular membrane? And how are transmembrane segments inserted, integrated and folded within the lipid bilayer? In eukaryotes, this process usually takes place in the endoplasmic reticulum, coincident with protein synthesis, and is facilitated by the translating ribosome and the Sec61 translocon complex (RTC). At its core, the RTC forms a dynamic pathway through which the elongating nascent polypeptide moves as it is delivered into the cytosolic, lumenal and lipid compartments. This Perspective will focus on emerging evidence that the RTC functions as a protein-folding machine that restricts conformational space by establishing transmembrane topology and yet provides a permissive environment that enables nascent transmembrane domains to efficiently progress down their folding energy landscape.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of polytopic protein biogenesis.
Figure 2: Mechanism of TM integration.
Figure 3: Potential arrangement of Sec61αβγ heterotrimers (gray cylinders) in the assembled translocon (purple disc) and implications for co-translational folding.

Similar content being viewed by others

References

  1. Popot, J.L. & Engelman, D. Helical membrane protein folding, stability and evolution. Annu. Rev. Biochem. 69, 881–922 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Bowie, J.U. Solving the membrane protein folding problem. Nature 438, 581–589 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Johnson, A.E. & van Waes, M. The translocon: a dynamic gateway at the ER membrane. Annu. Rev. Cell Dev. Biol. 15, 799–842 (1999).

    Article  PubMed  Google Scholar 

  4. Rapoport, T.A., Goder, V., Heinrich, S. & Matlack, K. Membrane-protein integration and the role of the translocation channel. Trends Cell Biol. 14, 568–575 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Blobel, G. Intracellular protein topogenesis. Proc. Natl. Acad. Sci. USA 77, 1496–1500 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schnell, D.J. & Hebert, D. Protein translocons: multifunctional mediators of protein translocation across membranes. Cell 112, 491–505 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. White, S.H. & von Heijne, G. The machinery of membrane protein assembly. Curr. Opin. Struct. Biol. 14, 397–404 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Johnson, A. Fluorescence approaches for determining protein conformations, interactions and mechanisms at membranes. Traffic 6, 1078–1092 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. von Heijne, G. Membrane-protein topology. Nat. Rev. Mol. Cell Biol. 7, 909–918 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Osborne, A.R., Rapoport, T.A. & van den Berg, B. Protein translocation by the Sec61/SecY channel. Annu. Rev. Cell Dev. Biol. 21, 529–550 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Pitonzo, D. & Skach, W. Molecular mechanisms of aquaporin biogenesis by the endoplasmic reticulum Sec61 translocon. Biochim. Biophys. Acta 1758, 976–988 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Sadlish, H. & Skach, W. Biogenesis of CFTR and other polytopic membrane proteins; new roles for the ribosome-translocon complex. J. Membr. Biol. 202, 115–126 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Walter, P. & Lingappa, V.R. Mechanisms of protein translocation across the endoplasmic reticulum membrane. Annu. Rev. Cell Biol. 2, 499–516 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Song, W., Raden, D., Mandon, E. & Gilmore, R. Role of Sec61α in the regulated transfer of the ribosome-nascent chain complex from the signal recognition particle to the translocation channel. Cell 100, 333–343 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Görlich, D., Hartmann, E., Prehn, S. & Rapoport, T. A protein of the endoplasmic reticulum involved in early polypeptide translocation. Nature 357, 47–52 (1992).

    Article  PubMed  Google Scholar 

  16. Wiedmann, M., Kurzchalia, T., Hartmann, E. & Rapoport, T. A signal sequence receptor in the endoplasmic reticulum membrane. Nature 328, 830–833 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Kelleher, D.J. & Gilmore, R. An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16, 47R–62R (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Shibatani, T., David, L., McCormack, A., Frueh, K. & Skach, W. Proteomic analysis of mammalian oligosaccharyltransferase reveals multiple subcomplexes that contain Sec61, TRAP and two potential new subunits. Biochemistry 44, 5982–5992 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Snapp, E.L., Reinhart, G., Bogert, B., Lippincott-Schwartz, J. & Hegde, R. The organization of engaged and quiescent translocons in the endoplasmic reticulum of mammalian cells. J. Cell Biol. 164, 997–1007 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Ménétret, J.-F. et al. Architecture of the ribosome-channel complex derived from native membranes. J. Mol. Biol. 348, 445–457 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. Ménétret, J.F. et al. Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome. Structure 16, 1126–1137 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Belin, D., Bost, S., Vassalli, J.-D. & Strub, K. A two step recognition of signal sequences determines the translocation efficiency of proteins. EMBO J. 15, 468–478 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jungnickel, B. & Rapoport, T. A posttargeting signal sequence recognition event in the endoplasmic reticulum membrane. Cell 82, 261–270 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Crowley, K.S., Liao, S., Worrell, V., Reinhart, G. & Johnson, A. Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 78, 461–471 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Crowley, K.S., Reinhart, G. & Johnson, A. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73, 1101–1115 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, S.J., Mitra, D., Salerno, J. & Hegde, R. Signal sequences control gating of the protein translocation channel in a substrate-specific manner. Dev. Cell 2, 207–217 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Hegde, R.S. & Kang, S.-W. The concept of translocational regulation. J. Cell Biol. 182, 225–232 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pitonzo, D., Yang, Z., Matsumura, Y., Johnson, A. & Skach, W. Sequence-specific retention and regulated integration of a nascent membrane protein by the ER Sec61 translocon. Mol. Biol. Cell 20, 685–698 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Woolhead, C.A., McCormick, P. & Johnson, A. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725–736 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Alder, N.N., Shen, Y., Brodsky, J., Hendershot, L. & Johnson, A. The molecular mechanisms underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum. J. Cell Biol. 168, 389–399 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haigh, N.G. & Johnson, A. A new role for BiP: closing the aqueous translocon pore during protein integration into the ER membrane. J. Cell Biol. 156, 261–270 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liao, S., Lin, J., Do, H. & Johnson, A. Both lumenal and cytosolic gating of the aqueous translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90, 31–41 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Martoglio, B., Hofmann, M., Brunner, J. & Dobberstein, B. The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer. Cell 81, 207–214 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Heinrich, S.U., Mothes, W., Brunner, J. & Rapoport, T. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Hessa, T. et al. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433, 377–381 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Hessa, T. et al. Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450, 1026–1030 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Enquist, K. et al. Membrane-integration characteristics of two ABC transporters, CFTR and P-glycoprotein. J. Mol. Biol. 387, 1153–1164 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Do, H., Falcone, D., Lin, J., Andrews, D. & Johnson, A. The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 85, 369–378 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Sadlish, H., Pitonzo, D., Johnson, A. & Skach, W. Sequential triage of transmembrane segments by Sec61α during biogenesis of a native multispanning membrane protein. Nat. Struct. Mol. Biol. 12, 870–878 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. McCormick, P.J., Miao, Y., Shao, Y., Lin, J. & Johnson, A. Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins. Mol. Cell 12, 329–341 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Meacock, S.L., Lecomte, F., Crawshaw, S. & High, S. Different transmembrane domains associate with distinct endoplasmic reticulum components during membrane integration of a polytopic protein. Mol. Biol. Cell 13, 4114–4129 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ismail, N., Crawshaw, S., Cross, B., Haagsma, A. & High, S. Specific transmembrane segments are selectively delayed at the ER translocon during opsin biogenesis. Biochem. J. 411, 495–506 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Hamman, B.D., Hendershot, L. & Johnson, A. BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 92, 747–758 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Skach, W. Topology of P-glycoproteins. Methods Enzymol. 292, 265–278 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Xie, Y., Langhans-Rajasekaran, S., Bellovino, D. & Morimoto, T. Only the first and the last hydrophobic segments in the COOH-terminal third of the Na,K-ATPase α subunit initiate and halt, respectively, membrane translocation of the newly synthesized polypeptide. J. Biol. Chem. 271, 2563–2573 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Skach, W.R., Calayag, M.C. & Lingappa, V. Evidence for an alternate model of human P-glycoprotein structure and biogenesis. J. Biol. Chem. 268, 6903–6908 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Skach, W.R. & Lingappa, V. Amino terminus assembly of human P-glycoprotein at the endoplasmic reticulum is directed by cooperative actions of two internal sequences. J. Biol. Chem. 268, 23552–23561 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Skach, W.R. et al. Biogenesis and transmembrane topology of the CHIP28 water channel in the endoplasmic reticulum. J. Cell Biol. 125, 803–815 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Moss, K., Helm, A., Lu, Y., Bragin, A. & Skach, W. Coupled translocation events generate topologic heterogeneity at the endoplasmic reticulum membrane. Mol. Biol. Cell 9, 2681–2697 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Audigier, Y., Friedlander, M. & Blobel, G. Multiple topogenic sequences in bovine opsin. Proc. Natl. Acad. Sci. USA 84, 5783–5787 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Agre, P. et al. Aquaporin water channels—from atomic structure to clinical medicine. J. Physiol. (Lond.) 542, 3–16 (2002).

    Article  CAS  Google Scholar 

  54. King, L.S., Kozono, D. & Agre, P. From structure to disease, the evolving tale of aquaporin biology. Nat. Rev. Mol. Cell Biol. 5, 687–698 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Fujiyoshi, Y. et al. Structure and function of water channels. Curr. Opin. Struct. Biol. 12, 509–515 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Sui, H., Han, B.-G., Lee, J., Walian, P. & Jap, B. Structural basis of water specific transport through the AQP1 water channel. Nature 414, 872–878 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Fu, D. et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481–486 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Verbavatz, J.M. et al. Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes. A freeze-fracture study. J. Cell Biol. 123, 605–618 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Smith, B.L. & Agre, P. Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J. Biol. Chem. 266, 6407–6415 (1991).

    Article  CAS  PubMed  Google Scholar 

  60. Buck, T.M., Wagner, J., Grund, S. & Skach, W. A novel tripartite structural motif involved in aquaporin topogenesis, monomer folding and tetramerization. Nat. Struct. Mol. Biol. 14, 762–769 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Shi, L.-B., Skach, W., Ma, T. & Verkman, A. Distinct biogenesis mechanisms for water channels MIWC and CHIP28 at the endoplasmic reticulum. Biochemistry 34, 8250–8256 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Lu, Y. et al. Reorientation of Aquaporin-1 topology during maturation in the endoplasmic reticulum. Mol. Biol. Cell 11, 2973–2985 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Foster, W. et al. Identification of sequence determinants that direct different intracellular folding pathways for AQP1 and AQP4. J. Biol. Chem. 275, 34157–34165 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Tu, L.W., Wang, J., Helm, A., Skach, W. & Deutsch, C. Transmembrane biogenesis of Kv1.3. Biochemistry 39, 824–836 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Lu, Y. et al. Co- and posttranslational mechanisms direct CFTR N-terminus transmembrane assembly. J. Biol. Chem. 273, 568–576 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Gratkowski, H., Lear, J. & DeGrado, W. Polar side chains drive the association of model transmembrane peptides. Proc. Natl. Acad. Sci. USA 98, 880–885 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhou, F.X., Cocco, M., Russ, W., Brunger, A. & Engelman, D. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nat. Struct. Biol. 7, 154–160 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Gafvelin, G. & von Heijne, G. Topological “frustration” in multispanning E. coli inner membrane. Cell 77, 401–412 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Goder, V., Bieri, C. & Spiess, M. Glycosylation can influence topogenesis of membrane proteins and reveals dynamic reorientation of nascent polypeptides within the translocon. J. Cell Biol. 147, 257–266 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Garrison, J., Kunkel, E., Hegde, R. & Taunton, J. A substrate-specific inhibitor of protein translocation into the endoplasmic reticulum. Nature 436, 285–289 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Bogdanov, M., Xie, J., Heacock, P. & Dowhan, W. To flip or not to flip: lipid-protein charge interactions are a determinant of final membrane protein topology. J. Cell Biol. 182, 925–935 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brambillasca, S., Yabal, M., Makarow, M. & Borgese, N. Unassisted translocation of large polypeptide domains across phospholipd bilayers. J. Cell Biol. 175, 767–777 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lin, J. & Addison, R. A novel integration signal that is composed of two transmembrane segments is required to integrate the Neurospora plasma membrane H+-ATPase into microsomes. J. Biol. Chem. 270, 6935–6941 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Ismail, N., Crawshaw, S. & High, S. Active and passive displacement of transmembrane domains during opsin biogenesis at the Sec61 translocon. J. Cell Sci. 119, 2826–2836 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Beckmann, R. et al. Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science 278, 2123–2126 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Ménétret, J.F. et al. The structure of ribosome-channel complexes engaged in protein translocation. Mol. Cell 6, 1219–1232 (2000).

    Article  PubMed  Google Scholar 

  77. Hanein, D. et al. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 87, 721–732 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Morgan, D.G., Menetret, J., Neuhof, A., Rapoport, T. & Akey, C. Structure of the mammalian ribosome-channel complex at 17Å resolution. J. Mol. Biol. 324, 871–886 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Young, J.C., Agashe, V., Siegers, K. & Hartl, F. Pathways of chaperone-mediated protein folding in the cytosol. Nat. Rev. Mol. Cell Biol. 5, 781–791 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Oberdorf, J., Pitonzo, D. & Skach, W. An energy-dependent maturation step is required for release of the cystic fibrosis transmembrane conductance regulator from early endoplasmic reticulum biosynthetic machinery. J. Biol. Chem. 280, 38193–38202 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Clemons, W.M., Menetret, J.-F., Akey, C. & Rapoport, T. Structural insight into the protein translocation channel. Curr. Opin. Struct. Biol. 14, 390–396 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Breyton, C., Haase, W., Rapoport, T., Kuehlbrandt, W. & Collinson, I. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 418, 662–665 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Mitra, K. et al. Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 438, 318–324 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hamman, B.D., Chen, J.-C., Johnson, E. & Johnson, A. The aqueous pore through the translocon has a diameter of 40–60Å during cotranslational protein translocation at the ER membrane. Cell 89, 535–544 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Kida, Y., Morimoto, F. & Sakaguchi, M. Two translocating hydrophilic segments of a nascent chain span the ER membrane during multispanning protein topogenesis. J. Cell Biol. 179, 1441–1452 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank B. Conti and other members of the Skach laboratory for helpful comments on this manuscript and the US National Institutes of Health (R01GM53457 and R01 DK51818) for supporting our research in this area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R Skach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skach, W. Cellular mechanisms of membrane protein folding. Nat Struct Mol Biol 16, 606–612 (2009). https://doi.org/10.1038/nsmb.1600

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1600

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing