Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Myosin-V makes two brownian 90° rotations per 36-nm step

Abstract

Myosin-V processively walks on actin filaments in a hand-over-hand fashion. The identical structures of the heads predict a symmetric hand-over-hand mechanism where regular, unidirectional rotation occurs during a 36-nm step. We investigated this by observing how fixed myosin-V rotates actin filaments. Actin filaments randomly rotated 90° both clockwise and counter-clockwise during each step. Furthermore, ATP-dependent rotations were regularly followed by ATP-independent ones. Kinetic analysis indicated that the two 90° rotations relate to the coordinated unbinding and rebinding of the heads with actin. We propose a 'brownian rotation hand-over-hand' model, in which myosin-V randomly rotates by thermally twisting its elastic neck domains during the 36-nm step. The brownian rotation may be advantageous for cargo transport through a crowded actin meshwork and for carrying cargoes reliably via multiple myosin-V molecules in the cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observation of actin-filament rotation by single myosin-V molecules.
Figure 2: 90° rotation of actin filaments.
Figure 3: Dwell times of 90° rotation steps.
Figure 4: Translational movement of actin filaments by single myosin-V molecules.
Figure 5: Correlation of the 90° rotation directions.
Figure 6: A brownian rotational hand-over-hand model.

Similar content being viewed by others

References

  1. Reck-Peterson, S.L., Provance, D.W., Jr., Mooseker, M.S. & Mercer, J.A. Class V myosins. Biochim. Biophys. Acta 1496, 36–51 (2000).

    Article  CAS  Google Scholar 

  2. Cheney, R.E. et al. Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75, 13–23 (1993).

    Article  CAS  Google Scholar 

  3. Miller, K.E. & Sheetz, M.P. Characterization of myosin V binding to brain vesicles. J. Biol. Chem. 275, 2598–2606 (2000).

    Article  CAS  Google Scholar 

  4. Vale, R.D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    Article  CAS  Google Scholar 

  5. Walker, M.L. et al. Two-headed binding of a processive myosin to F-actin. Nature 405, 804–807 (2000).

    Article  CAS  Google Scholar 

  6. Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    Article  CAS  Google Scholar 

  7. Mehta, A.D. et al. Myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999).

    Article  CAS  Google Scholar 

  8. Howard, J. The movement of kinesin along microtubules. Annu. Rev. Physiol. 58, 703–729 (1996).

    Article  CAS  Google Scholar 

  9. Ali, M.Y. et al. Myosin V is a left-handed spiral motor on the right-handed actin helix. Nat. Struct. Biol. 9, 464–467 (2002).

    Article  CAS  Google Scholar 

  10. Hua, W., Chung, J. & Gelles, J. Distinguishing inchworm and hand-over-hand processive kinesin movement by neck rotation measurements. Science 295, 844–848 (2002).

    Article  CAS  Google Scholar 

  11. Asbury, C.L., Fehr, A.N. & Block, S.M. Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302, 2130–2134 (2003).

    Article  CAS  Google Scholar 

  12. Ariga, T., Masaike, T., Noji, H. & Yoshida, M. Stepping rotation of F(1)-ATPase with one, two, or three altered catalytic sites that bind ATP only slowly. J. Biol. Chem. 277, 24870–24874 (2002).

    Article  CAS  Google Scholar 

  13. Rief, M. et al. Myosin-V stepping kinetics: a molecular model for processivity. Proc. Natl. Acad. Sci. USA 97, 9482–9486 (2000).

    Article  CAS  Google Scholar 

  14. Watanabe, T.M. et al. A one-headed class V myosin molecule develops multiple large (approximately 32-nm) steps successively. Proc. Natl. Acad. Sci. USA 101, 9630–9635 (2004).

    Article  CAS  Google Scholar 

  15. Howard, J., Hudspeth, A.J. & Vale, R.D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989).

    Article  CAS  Google Scholar 

  16. Svoboda, K., Schmidt, C.F., Schnapp, B.J. & Block, S.M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    Article  CAS  Google Scholar 

  17. Hannemann, D.E., Cao, W., Olivares, A.O., Robblee, J.P. & De La Cruz, E.M. Magnesium, ADP, and actin binding linkage of myosin V: evidence for multiple myosin V-ADP and actomyosin V-ADP states. Biochemistry 44, 8826–8840 (2005).

    Article  CAS  Google Scholar 

  18. Gebhardt, J.C., Clemen, A.E., Jaud, J. & Rief, M. Myosin-V is a mechanical ratchet. Proc. Natl. Acad. Sci. USA 103, 8680–8685 (2006).

    Article  CAS  Google Scholar 

  19. Vale, R.D., Soll, D.R. & Gibbons, I.R. One-dimensional diffusion of microtubules bound to flagellar dynein. Cell 59, 915–925 (1989).

    Article  CAS  Google Scholar 

  20. De La Cruz, E.M., Wells, A.L., Rosenfeld, S.S., Ostap, E.M. & Sweeney, H.L. The kinetic mechanism of myosin V. Proc. Natl. Acad. Sci. USA 96, 13726–13731 (1999).

    Article  CAS  Google Scholar 

  21. Forkey, J.N., Quinlan, M.E., Shaw, M.A., Corrie, J.E. & Goldman, Y.E. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404 (2003).

    Article  CAS  Google Scholar 

  22. Dunn, A.R. & Spudich, J.A. Dynamics of the unbound head during myosin V processive translocation. Nat. Struct. Mol. Biol. 14, 246–248 (2007).

    Article  CAS  Google Scholar 

  23. Veigel, C., Wang, F., Bartoo, M.L., Sellers, J.R. & Molloy, J.E. The gated gait of the processive molecular motor, myosin V. Nat. Cell Biol. 4, 59–65 (2002).

    Article  CAS  Google Scholar 

  24. Okada, T. et al. The diffusive search mechanism of processive myosin class-V motor involves directional steps along actin subunits. Biochem. Biophys. Res. Commun. 354, 379–384 (2007).

    Article  CAS  Google Scholar 

  25. Uemura, S., Higuchi, H., Olivares, A.O., De La Cruz, E.M. & Ishiwata, S. Mechanochemical coupling of two substeps in a single myosin V motor. Nat. Struct. Mol. Biol. 11, 877–883 (2004).

    Article  CAS  Google Scholar 

  26. Baker, J.E. et al. Myosin V processivity: multiple kinetic pathways for head-to-head coordination. Proc. Natl. Acad. Sci. USA 101, 5542–5546 (2004).

    Article  CAS  Google Scholar 

  27. Shiroguchi, K. & Kinosita, K., Jr. Myosin v walks by lever action and Brownian motion. Science 316, 1208–1212 (2007).

    Article  CAS  Google Scholar 

  28. Toprak, E. et al. Defocused orientation and position imaging (DOPI) of myosin V. Proc. Natl. Acad. Sci. USA 103, 6495–6499 (2006).

    Article  CAS  Google Scholar 

  29. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995).

    Article  CAS  Google Scholar 

  30. Spudich, J.A. & Watt, S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem. 246, 4866–4871 (1971).

    CAS  PubMed  Google Scholar 

  31. Harada, Y., Sakurada, K., Aoki, T., Thomas, D.D. & Yanagida, T. Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J. Mol. Biol. 216, 49–68 (1990).

    Article  CAS  Google Scholar 

  32. Hunt, A.J. & Howard, J. Kinesin swivels to permit microtubule movement in any direction. Proc. Natl. Acad. Sci. USA 90, 11653–11657 (1993).

    Article  CAS  Google Scholar 

  33. Yanagida, T., Nakase, M., Nishiyama, K. & Oosawa, F. Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307, 58–60 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Core Research for Evolutional Science and Technology program of the Japanese Science and Technology Corporation and the Special Coordination Funds for Promoting Science and Technology: Yuragi Project of the Ministry of Education, Culture, Sports, Science and Technology, Japan. We are grateful to O. Ohara and H. Yamakawa at the Kazusa DNA Research Institute for providing complementary DNA fragments encoding human myosin-V; T. Wazawa and H. Tanaka for technical support in the single-molecule assay; T. Mimuro-Ichinose for generating the human myosin-V construct; Y. Ishii and P. Karagiannis for critically reading the manuscript and for helpful discussions; and colleagues of the Yanagida laboratory at the Single Molecule Processes Project, Formation of Soft Nanomachines, and Osaka University for discussion.

Author information

Authors and Affiliations

Authors

Contributions

Y.K. conceived the experiments, constructed the microscopy system, devised custom software, prepared materials, performed experiments and analyzed data. A.H.I. designed, constructed and expressed recombinant myosin-V. All processes were supervised by T.Y. Y.K., A.H.I. and T.Y. wrote the manuscript.

Corresponding author

Correspondence to Toshio Yanagida.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Discussion (PDF 472 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komori, Y., Iwane, A. & Yanagida, T. Myosin-V makes two brownian 90° rotations per 36-nm step. Nat Struct Mol Biol 14, 968–973 (2007). https://doi.org/10.1038/nsmb1298

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1298

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing