Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multifunctional glycoprotein DEFB126—a curious story of defensin-clad spermatozoa

Abstract

During maturation, the surface of mammalian spermatozoa undergoes dramatic changes leading to the acquisition of properties vital for survival and performance in the female reproductive tract. A prominent change is the addition to the sperm surface of an atypical β-defensin polypeptide. In primates, the β-defensin DEFB126 becomes adsorbed to the entire sperm surface as spermatozoa move through the epididymal duct. DEFB126 has a conserved β-defensin core and a unique long glycosylated peptide tail. The carbohydrates of this domain contribute substantially to the sperm glycocalyx. DEFB126 is critical for efficient transport of sperm in the female reproductive tract, preventing their recognition by the female immune system, and might facilitate the delivery of capacitated sperm to the site of fertilization. A newly discovered dinucleotide deletion in the human DEFB126 gene is unusually common in diverse populations and results in a null allele. Predictably, men who are homozygous for the deletion produce sperm with an altered glycocalyx and impaired function, and have reduced fertility. Insights into the biology of DEFB126 are contributing to a better understanding of reproductive fitness in humans, as well as the development of diagnostics and therapeutics for male infertility.

Key Points

  • β-defensin DEFB126 is adsorbed to the sperm surface during epididymal maturation

  • DEFB126 has an atypical β-defensin structure, possessing a highly glycosylated peptide tail that contributes substantially to the sperm glycocalyx

  • The glycosylated tail of DEFB126 confers properties to sperm shown in macaques to be important for transport in the female reproductive tract

  • DEFB126 protects macaque sperm from immune surveillance in the female reproductive tract

  • A mutation in the human DEFB126 gene that disables the synthesis of DEFB126 results in major alterations in the glycocalyx of sperm, poor sperm performance in cervical mucus-like viscous gels, and reduced fertility

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DEFB126 is adsorbed to sperm during epididymal transit.
Figure 2: Electron micrographs show immunogold localization of DEFB126.
Figure 3: DEFB126 facilitates sperm transport.
Figure 4: The immunoprotective effect of DEFB126.
Figure 5: DEFB126 binding to oviductal epithelium.
Figure 6: DEFB126 mutation, sperm glycocalyx structure and infertility.

Similar content being viewed by others

References

  1. Diekman, A. B. Glycoconjugates in sperm function and gamete interactions: how much sugar does it take to sweet-talk the egg? Cell. Mol. Life. Sci. 60, 298–308 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Schroter, S., Osterhoff, C., McArdle, W. & Ivell, R. The glycocalyx of the sperm surface. Hum. Reprod. Update 5, 302–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Dacheux, J. L., Gatti, J. L. & Dacheux, F. Contribution of epididymal secretory proteins for spermatozoa maturation. Microsc. Res. Tech. 61, 7–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Gatti, J. L. et al. Post-testicular sperm environment and fertility. Anim. Reprod. Sci. 83, 321–339 (2004).

    Article  Google Scholar 

  5. Yudin, A. I. et al. ESP13.2, a member of the beta-defensin family, is a macaque sperm surface-coating protein involved in the capacitation process. Biol. Reprod. 69, 1118–1128 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Perry, A. C., Jones, R., Moisyadi, S., Coadwell, J. & Hall, L. The novel epididymal secretory protein ESP13.2 in Macaca fascicularis. Biol. Reprod. 61, 965–972 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Rodriguez-Jimenez, F. J. et al. Distribution of new human beta-defensin genes clustered on chromosome 20 in functionally different segments of epididymis. Genomics 81, 175–183 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Jelinsky, S. A. et al. The rat epididymal transcriptome: comparison of segmental gene expression in the rat and mouse epididymides. Biol. Reprod. 76, 561–570 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Patil, A. A., Cai, Y., Sang, Y., Blecha, F. & Zhang, G. Cross-species analysis of the mammalian beta-defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract. Physiol. Genomics 23, 5–17 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Yudin, A. et al. Beta-defensin 22 is a major component of the mouse sperm glyocalyx. Reproduction 136, 753–765 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yudin, A. I., Treece, C. A., Tollner, T. L., Overstreet, J. W. & Cherr, G. N. The carbohydrate structure of DEFB126, the major component of the cynomolgus Macaque sperm plasma membrane glycocalyx. J. Membr. Biol. 207, 119–129 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Tollner, T. L. et al. A common mutation in the defensin DEFB126 causes impaired sperm function and subfertility. Sci. Transl. Med. 3, 92ra65 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zanich, A., Pascall, J. C. & Jones, R. Secreted epididymal glycoprotein 2D6 that binds to the sperm's plasma membrane is a member of the beta-defensin superfamily of pore-forming glycopeptides. Biol. Reprod. 69, 1831–1842 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Yudin, A. et al. Beta-defensin 126 on the cell surface protects sperm from immunorecognition and binding of anti-sperm antibodies. Biol. Reprod. 73, 1243–1252 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Tollner, T. L., Yudin, A. I., Treece, C. A., Overstreet, J. O. & Cherr, G. N. Macaque sperm release ESP13.2 and PSP94 during capacitation: The absence of ESP13.2 is linked to sperm-zona recognition and binding. Mol. Reprod. Dev. 69, 325–337 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Tollner, A. I. et al. Beta-defensin 126 on the surface of macaque sperm mediates attachment of sperm to oviductal epithelia. Biol. Reprod. 78, 400–412 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Jaiswal, B. S. & Eisenbach, M. in Fertilization (ed. Hardy, D. M.) 57–117 (Academic Press, San Diego, 2002).

    Book  Google Scholar 

  18. Yanagimachi, R. in The Physiology of Reproduction (eds Knobil, E. & Neill, J. D.) 189–317 (Raven Press, New York, 1994).

    Google Scholar 

  19. Overstreet, J. W. & VandeVoort, C. A. in Gamete Physiology. (eds Asch, R. H., Balmaceda, J. P. & Johnston, I.) 43–52 (Serona Symposia USA, Norwell, 1990).

    Google Scholar 

  20. Katz, D. F. & Overstreet, J. W. The mechanisms and analysis of sperm migration through cervical mucus. Adv. Exp. Med. Biol. 144, 319–330 (1982).

    Article  CAS  PubMed  Google Scholar 

  21. Yudin, A. I., Hanson, F. W. & Katz, D. F. Human cervical mucus and its interaction with sperm: a fine-structural view. Biol. Reprod. 40, 661–671 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Olmsted, S. S. et al. Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys. J. 81, 1930–1937 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Menarguez, M., Pastor, L. M. & Odeblad, E. Morphological characterization of different human cervical mucus types using light and scanning electron microscopy. Hum. Reprod. 18, 1782–1789 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Chretien, F. C. Involvement of the glycoproteic meshwork of cervical mucus in the mechanism of sperm orientation. Acta Obstet. Gynecol. Scand. 82, 449–461 (2003).

    Article  PubMed  Google Scholar 

  25. Katz, D. F., Drobnis, E. Z. & Overstreet, J. W. Factors regulating mammalian sperm migration through the female reproductive tract and oocyte vestments. Gamete Res. 22, 443–469 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Tollner, T. L., Yudin, A. I., Treece, C. A., Overstreet, J. W. & Cherr, G. N. Macaque sperm coating protein DEFB126 facilitates sperm penetration of cervical mucus. Hum. Reprod. 23, 2523–2534 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Yurewicz, E. C., Matsuura, F. & Moghissi, K. S. Structural studies of sialylated oligosaccharides of human midcycle cervical mucin. J. Biol. Chem. 262, 4733–4739 (1987).

    CAS  PubMed  Google Scholar 

  28. Nasir-ud, D., Hoessli, D. C., Rungger-Brandle, E., Hussain, S. A. & Walker-Nasir, E. Role of sialic acid and sulfate groups in cervical mucus physiological functions: study of Macaca radiata glycoproteins. Biochim. Biophys. Acta 1623, 53–61 (2003).

    Article  CAS  Google Scholar 

  29. Franklin, R. D. & Kutteh, W. H. Characterization of immunoglobulins and cytokines in human cervical mucus: influence of exogenous and endogenous hormones. J. Reprod. Immunol. 42, 93–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Kutteh, W. H., Moldoveanu, Z. & Mestecky, J. Mucosal immunity in the female reproductive tract: correlation of immunoglobulins, cytokines, and reproductive hormones in human cervical mucus around the time of ovulation. AIDS Res. Hum. Retroviruses 14 (Suppl. 1), S51–S55 (1998).

    CAS  PubMed  Google Scholar 

  31. Wira, C. R., Fahey, J. V., Sentman, C. L., Pioli, P. A. & Shen, L. Innate and adaptive immunity in female genital tract: cellular responses and interactions. Immunol. Rev. 206, 306–335 (2005).

    Article  PubMed  Google Scholar 

  32. Kalaydjiev, S. K. et al. The age-related changes in the incidence of 'natural' anti-sperm antibodies suggest they are not auto-/isoantibodies. Am. J. Reprod. Immunol. 47, 65–71 (2002).

    Article  PubMed  Google Scholar 

  33. Jones, W. R. Gamete immunology. Hum. Reprod. 9, 828–841 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Barratt, C. L. & Pockley, A. G. Sperm survival in the female reproductive tract: presence of immunosuppression or absence of recognition? Mol. Hum. Reprod. 4, 309–313 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Suarez, S. S. Formation of a reservoir of sperm in the oviduct. Reprod. Domest. Anim. 37, 140–143 (2002).

    Article  PubMed  Google Scholar 

  36. Hunter, R. H., Flechon, B. & Flechon, J. E. Pre- and peri-ovulatory distribution of viable spermatozoa in the pig oviduct: a scanning electron microscope study. Tissue Cell 19, 423–436 (1987).

    Article  CAS  PubMed  Google Scholar 

  37. Hunter, R. H., Flechon, B. & Flechon, J. E. Distribution, morphology and epithelial interactions of bovine spermatozoa in the oviduct before and after ovulation: a scanning electron microscope study. Tissue Cell 23, 641–656 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Suarez, S. S. Regulation of sperm storage and movement in the mammalian oviduct. Int. J. Dev. Biol. 52, 455–462 (2008).

    Article  PubMed  Google Scholar 

  39. Holt, W. V. & Fazeli, A. The oviduct as a complex mediator of mammalian sperm function and selection. Mol. Reprod. Dev. 77, 934–943 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Drobnis, E. Z. & Overstreet, J. W. Natural history of mammalian spermatozoa in the female reproductive tract. Oxf. Rev. Reprod. Biol. 14, 1–45 (1992).

    CAS  PubMed  Google Scholar 

  41. Rodriguez-Martinez, H. et al. Boar spermatozoa in the oviduct. Theriogenology 63, 514–535 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Hunter, R. H. & Rodriguez-Martinez, H. Capacitation of mammalian spermatozoa in vivo, with a specific focus on events in the Fallopian tubes. Mol. Reprod. Dev. 67, 243–250 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Leese, H. J. The formation and function of oviduct fluid. J. Reprod. Fertil. 82, 843–856 (1988).

    Article  CAS  PubMed  Google Scholar 

  44. Galantino-Homer, H. L., Florman, H. M., Storey, B. T., Dobrinski, I. & Kopf, G. S. Bovine sperm capacitation: assessment of phosphodiesterase activity and intracellular alkalinization on capacitation-associated protein tyrosine phosphorylation. Mol. Reprod. Dev. 67, 487–500 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Leese, H. J., Tay, J. I., Reischl, J. & Downing, S. J. Formation of Fallopian tubal fluid: role of a neglected epithelium. Reproduction 121, 339–346 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Gardner, D. K., Lane, M., Calderon, I. & Leeton, J. Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil. Steril. 65, 349–353 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Hunter, R. H., Petersen, H. H. & Greve, T. Ovarian follicular fluid, progesterone and Ca2+ ion influences on sperm release from the fallopian tube reservoir. Mol. Reprod. Dev. 54, 283–291 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Anderson, S. H. & Killian, G. J. Effect of macromolecules from oviductal conditioned medium on bovine sperm motion and capacitation. Biol. Reprod. 51, 795–799 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Kawakami, E., Arai, T., Oishi, I., Hori, T. & Tsutsu, T. Induction of dog sperm capacitation by glycosaminoglycans and glycosaminoglycan amounts of oviductal and uterine fluids in bitches. J. Vet. Med. Sci. 62, 65–68 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Rodriguez-Martinez, H. Role of the oviduct in sperm capacitation. Theriogenology 68 (Suppl. 1), S138–S146 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Talevi, R., Zagami, M., Castaldo, M. & Gualtieri, R. Redox regulation of sperm surface thiols modulates adhesion to the fallopian tube epithelium. Biol. Reprod. 76, 728–735 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Gualtieri, R., Mollo, V., Duma, G. & Talevi, R. Redox control of surface protein sulphhydryls in bovine spermatozoa reversibly modulates sperm adhesion to the oviductal epithelium and capacitation. Reproduction 138, 33–43 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Tollner, T. et al. Release of DEFB126 from macaque sperm and completion of capacitation are triggered by conditions that simulate periovulatory oviductal fluid. Mol. Reprod. Dev. 76, 431–443 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Maas, D. H., Storey, B. T. & Mastroianni, L. Jr. Hydrogen ion and carbon dioxide content of the oviductal fluid of the rhesus monkey (Macaca mulatta). Fertil. Steril. 28, 981–985 (1977).

    Article  CAS  PubMed  Google Scholar 

  55. Parrish, J. J., Susko-Parrish, J. L. & First, N. L. Capacitation of bovine sperm by heparin: inhibitory effect of glucose and role of intracellular pH. Biol. Reprod. 41, 683–699 (1989).

    Article  CAS  PubMed  Google Scholar 

  56. Vredenburgh-Wilberg, W. L. & Parrish, J. J. Intracellular pH of bovine sperm increases during capacitation. Mol. Reprod. Dev. 40, 490–502 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Pastor-Soler, N., Piétrement, C. & Breton, S. Role of acid/base transporters in the male reproductive tract and potential consequences of their malfunction. Physiology 20, 417–428 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Bagnis, C., Marsolais, M., Biemesderfer, D., Laprade, R. & Breton, S. Na+/H+-exchange activity and immunolocalization of NHE3 in rat epididymis. Am. J. Physiol. Renal Physiol. 280, F426–F436 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Jenkins, A. D., Lechene, C. P. & Howards, S. S. Concentrations of seven elements in the intraluminal fluids of the rat seminiferous tubules, rate testis, and epididymis. Biol. Reprod. 23, 981–987 (1980).

    Article  CAS  PubMed  Google Scholar 

  60. Hinton, B. T., Palladino, M. A., Rudolph, D., Lan Z. J. & Labus, J. C. The role of the epididymis in the protection of spermatozoa. Curr. Top. Dev. Biol. 33, 61–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Suarez, S. S. & Pacey, A. A. Sperm transport in the female reproductive tract. Hum. Reprod. Update 12, 23–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Grippo, A. A., Henault, M. A., Anderson, S. H. & Killian, G. J. Cation concentrations in fluid from the oviduct ampulla and isthmus of cows during the estrous cycle. J. Dairy Sci. 75, 58–65 (1992).

    Article  CAS  PubMed  Google Scholar 

  63. Eisenbach, M. & Giojalas, L. C. Sperm guidance in mammals—an unpaved road to the egg. Nat. Rev. Mol. Cell. Biol. 7, 276–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Chatr-Aryamontri, A. et al. Nonsense-mediated and nonstop decay of ribosomal protein S19 mRNA in Diamond-Blackfan anemia. Hum. Mutat. 24, 526–533 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Ameri, A. et al. Nonstop mutation in the factor (F)X gene of a severely haemorrhagic patient with complete absence of coagulation FX. Thromb. Haemost. 98, 1165–1169 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Frischmeyer, P. A. et al. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295, 2258–2261 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Maquat, L. E. Molecular biology. Skiing toward nonstop mRNA decay. Science 295, 2221–2222 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Isken, O. & Maquat, L. E. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev. 21, 1833–1856 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Akimitsu, N., Tanaka, J. & Pelletier, J. Translation of nonSTOP mRNA is repressed post-initiation in mammalian cells. EMBO J. 26, 2327–2338 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Crespi, B. J. DEFB126—A Poster Gene for antagonistic pleiotropy? The Evolution & Medicine Review [online], (2011).

  71. Dacheux, J. L. et al. Mammalian epididymal proteome. Mol. Cell Endocrinol. 306, 45–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Pilch, B. & Mann, M. Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol. 7, R40 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Radhakrishnan, Y. et al. Identification, characterization, and evolution of a primate beta-defensin gene cluster. Genes Immun. 6, 203–210 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Okuda, S. H. et al. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458, 357–361 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Shimizu, M., Watanabe, Y., Isobe, N. & Yoshimura, Y. Expression of avian beta-defensin 3, an antimicrobial peptide, by sperm in the male reproductive organs and oviduct in chickens: an immunohistochemical study. Poult. Sci. 87, 2653–2659 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Jin, J. Y. et al. Antibacterial and antiviral roles of a fish beta-defensin expressed both in pituitary and testis. PLoS ONE 5, e12883 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang, L., Leong, S. S. & Jiang, R. Soluble fusion expression and characterization of bioactive human beta-defensin 26 and 27. Appl. Microbiol. Biotechnol. 84, 301–308 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Diao, H., Yu, H. G., Sun, F., Zhang, Y. L. & Tanphaichitr, N. Rat recombinant β-defensin 22 is a heparin-binding protein with antimicrobial activity. Asian J. Androl. 13, 305–311 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. King, A. E., Critchley, H. O. & Kelly, R. W. Innate immune defenses in the human endometrium. Reprod. Biol. Endocrinol. 28, 116 (2003).

    Article  Google Scholar 

  80. Holt, W. V. Mechanisms of sperm storage in the female reproductive tract: an interspecies comparison. Reprod. Domest. Anim. 46 (Suppl. 2), 68–74 (2011).

    Article  PubMed  Google Scholar 

  81. Sever, D. M., Tait, C. K., Diller, L. V. & Burkholder, L. Ultrastructure of the annual cycle of female sperm storage in spermathecae of the torrent Salamander, Rhyacotriton variegatus (Amphibia: Rhyacotritonidae). J. Morphol. 261, 1–17 (2004).

    Article  PubMed  Google Scholar 

  82. Parenti, L. R., LoNostro, F. L. & Grier, H. J. Reproductive histology of Tomeurus gracilis Eigenmann, 1909 (Teleostei: Atherinomorpha: Poeciliidae) with comments on evolution of viviparity in atherinomorph fishes. J. Morphol. 271, 1399–1406 (2010).

    Article  PubMed  Google Scholar 

  83. Sant'Anna, B. S., Pinheiro, M. A. A., Mataqueiro, M. & Zara, F. J. Spermathecae of the mangrove crab Ucides cordatus: a histological and histochemical view. J. Mar. Biol. Assoc. UK 87, 903–911 (2007).

    Article  CAS  Google Scholar 

  84. Wolfner, M. F. Tokens of love: functions and regulation of Drosophila male accessory gland products. Insect Biochem. Molec. Biol. 27, 179–192 (1997).

    Article  CAS  Google Scholar 

  85. Wolfner, M. F. The gifts that keep on giving: physiological functions and evolutionary dynamics of male seminal proteins in Drosophila. Heredity 88, 85–93 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Avila, F. W., Sirot, L. K., LaFlamme, B. A., Rubinstein, C. D. & Wolfner, M. F. Insect seminal fluid proteins: identification and function. Annu. Rev. Entomol. 56, 21–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pelaez, J. & Long, J. A. Characterizing the glycocalyx of poultry spermatozoa: I. Identification and distribution of carbohydrate residues using flow cytometry and epifluorescence microscopy. J. Androl. 28, 342–352 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Pelaez, J. & Long, J. A. Characterizing the glycocalyx of poultry spermatozoa: II. In vitro storage of turkey semen and mobility phenotype affects the carbohydrate component of sperm membrane glycoconjugates. J. Androl. 29, 431–439 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Steele, M. G. & Wishart, G. J. Demonstration that the removal of sialic acid from the surface of chicken spermatozoa impedes their transvaginal migration. Theriogenology 46, 1037–1044 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Froman, D. P. & Engel, H. N. Jr. Alteration of the spermatozoal glycocalyx and its effect on duration of fertility in the fowl (Gallus domesticus). Biol. Reprod. 40, 615–621 (1989).

    Article  CAS  PubMed  Google Scholar 

  91. Howarth, B. Jr. Influence of neuraminidase on fertility and on sperm storage in the hen's oviduct. Poult. Sci. 69, 119–123 (1990).

    Article  CAS  PubMed  Google Scholar 

  92. Czuppon, A. B. Biochemical characterization of a human spermatozoal sialoglycoprotein with respect to antigenicity masking by its sialic acid moieties. Biochem. Int. 8, 9–18 (1984).

    CAS  PubMed  Google Scholar 

  93. Toshimori, K., Araki, S. & Oura, C. Masking of sperm maturation antigen by sialic acid in the epididymis of the mouse. An immunohistochemical study. Histochemistry 90, 195–200 (1988).

    Article  CAS  PubMed  Google Scholar 

  94. Toshimori, K., Araki, S., Oura, C. & Eddy, E. M. Loss of sperm surface sialic acid induces phagocytosis: an assay with a monoclonal antibody T21, which recognizes a 54K sialoglycoprotein. Arch. Androl. 27, 79–86 (1991).

    Article  CAS  PubMed  Google Scholar 

  95. Toshimori, K., Araki, S., Tanii, I. & Oura, C. Masking the cryptodeterminant on the 54-kilodalton mouse sperm surface antigen. Biol. Reprod. 47, 1161–1167 (1992).

    Article  CAS  PubMed  Google Scholar 

  96. Ganz, T. Defensins: antimicrobial peptides of vertebrates. C R Biol. 327, 539–549 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Lehrer, R. I. Primate defensins. Nat. Rev. Microbiol. 2, 727–738 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Selsted, M. E. & Ouellette, A. J. Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 6, 551–557 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Schutte, B. C. et al. Discovery of five conserved beta -defensin gene clusters using a computational search strategy. Proc. Natl Acad. Sci. USA 99, 2129–2133 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Com, E. et al. Expression of antimicrobial defensins in the male reproductive tract of rats, mice, and humans. Biol. Reprod. 68, 95–104 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Amien, S. et al. Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1. PLoS Biol. 8, e1000388 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xu, W. F. et al. Quantitative gene expression and in situ localization of scygonadin potentially associated with reproductive immunity in tissues of male and female mud crabs, Scylla paramamosain. Fish Shellfish Immunol. 31, 243–251 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Lawniczak, M. K. et al. Mating and immunity in invertebrates. Trends Ecol. Evol. 22, 48–55 (2007).

    Article  PubMed  Google Scholar 

  104. Reznick, D. N. & Miles, D. B. in Ecology and Evolution of Livebearing Fishes (Poeciliidae). (eds Meffe, G. K. & Snelson, F. F. Jr) 125–148 (Prentice Hall, Englewood Cliffs, 1989).

    Google Scholar 

  105. Zhou, C. X. et al. An epididymis-specific beta-defensin is important for the initiation of sperm maturation. Nat. Cell. Biol. 6, 458–464 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Zhao, Y. et al. The epididymis-specific antimicrobial peptide β-defensin 15 is required for sperm motility and male fertility in the rat (Rattus norvegicus). Cell. Mol. Life Sci. 68, 697–708 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Bulet, P., Stöcklin, R. & Menin, L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev. 198, 169–184 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Lung, O., Kuo, L. & Wolfner, M. F. Drosophila males transfer antibacterial proteins from their accessory gland and ejaculatory duct to their mates. J. Insect Physiol. 47, 617–622 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by grants from the National Science Foundation (NSF: IOS-0843649) and the National Institute of Health (NIH: R01AI32738).

Author information

Authors and Affiliations

Authors

Contributions

T. L. Tollner, C. L. Bevins & G. N. Cherr made substantial contributions to researching data for the article, discussion of content, writing, and reviewing the manuscript before submission.

Corresponding author

Correspondence to Theodore L. Tollner.

Ethics declarations

Competing interests

The authors declare that they are patent holders/applicants for the University of California, Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tollner, T., Bevins, C. & Cherr, G. Multifunctional glycoprotein DEFB126—a curious story of defensin-clad spermatozoa. Nat Rev Urol 9, 365–375 (2012). https://doi.org/10.1038/nrurol.2012.109

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2012.109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing