Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The clinical implications of medulloblastoma subgroups

Abstract

Medulloblastoma, the most common malignant paediatric brain tumour, is currently diagnosed and stratified using a combination of clinical and demographic variables. Recent transcriptomic approaches have demonstrated that the histological entity known as medulloblastoma is comprised of multiple clinically and molecularly distinct subgroups. The current consensus is that four defined subgroups of medulloblastoma exist: WNT, SHH, Group 3, and Group 4. Each subgroup probably contains at least one additional level of hierarchy, with some evidence for multiple subtypes within each subgroup. The demographic and clinical differences between the subgroups present immediate and pressing questions to be addressed in the next round of clinical trials for patients with medulloblastoma. Many of the genetically defined targets for rational medulloblastoma therapies are unique to a given subgroup, suggesting the need for subgroup-specific trials of novel therapies. The development of practical, robust and widely accepted subgroup biomarkers that are amenable to the conditions of a prospective clinical trial is, therefore, an urgent need for the paediatric neuro-oncology community. In this Review, we discuss the clinical implications of molecular subgrouping in medulloblastoma, highlighting how these subgroups are transitioning from a research topic in the laboratory to a clinically relevant topic with important implications for patient care.

Key Points

  • Medulloblastoma is no longer regarded as a single disease: at least four main subgroups—WNT, SHH, Group 3, and Group 4—are now accepted to exist

  • Each subgroup of medulloblastoma exhibits distinct patient demographics, underlying genomics, and transcriptomics, which leads to disparate clinical presentation

  • Patient subgroup status will become an integral component of prospective clinical trials, and will enable the use of treatment protocols that are rationally tailored towards each subgroup of the disease

  • Methods to verify patient subgroup affiliation will continue to evolve and become increasingly important as subgrouping of patients becomes routine in clinical practice

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histology of medulloblastoma subgroups.
Figure 2: Molecular classification of medulloblastoma subgroups.
Figure 3: Features of the four medulloblastoma subgroups.
Figure 4: Signature karyotypes of and genetic events in medulloblastoma subgroups.
Figure 5: Oncogenes, tumour suppressors, and key cytogenetics of medulloblastoma subgroups.

Similar content being viewed by others

References

  1. Rorke, L. B. The cerebellar medulloblastoma and its relationship to primitive neuroectodermal tumours. J. Neuropathol. Exp. Neurol. 42, 1–15 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Northcott, P. A., Rutka, J. T. & Taylor, M. D. Genomics of medulloblastoma: from Giemsa-banding to next-generation sequencing in 20 years. Neurosurg. Focus 28, E6 (2010).

    Article  PubMed  Google Scholar 

  3. Pietsch, T., Taylor, M. D. & Rutka, J. T. Molecular pathogenesis of childhood brain tumours. J. Neurooncol. 70, 203–215 (2004).

    Article  PubMed  Google Scholar 

  4. Yokota, N. et al. Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. Oncogene 23, 3444–3453 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Park, P. C. et al. Transcriptional profiling of medulloblastoma in children. J. Neurosurg. 99, 534–541 (2003).

    Article  PubMed  Google Scholar 

  6. Mainprize, T. G., Taylor, M. D. & Rutka, J. T. Pediatric brain tumours: a contemporary prospectus. Clin. Neurosurg. 47, 259–302 (2000).

    CAS  PubMed  Google Scholar 

  7. Taylor, M. D., Mainprize, T. G. & Rutka, J. T. Molecular insight into medulloblastoma and central nervous system primitive neuroectodermal tumor biology from hereditary syndromes: a review. Neurosurgery 47, 888–901 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Bayani, J. et al. Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumours by using conventional banding, comparative genomic hybridization, and spectral karyotyping. J. Neurosurg. 93, 437–448 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Packer, R. J. Medulloblastoma. J. Neurosurg. 103, 299–300 (2005).

    PubMed  Google Scholar 

  10. Packer, R. J., Rood, B. R. & MacDonald, T. J. Medulloblastoma: present concepts of stratification into risk groups. Pediatr. Neurosurg. 39, 60–67 (2003).

    Article  PubMed  Google Scholar 

  11. Packer, R. J. Childhood medulloblastoma: progress and future challenges. Brain Dev. 21, 75–81 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Packer, R. J. et al. Outcome for children with medulloblastoma treated with radiation and cisplatin, CCNU, and vincristine chemotherapy. J. Neurosurg. 81, 690–698 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Johnson, D. L. et al. Quality of long-term survival in young children with medulloblastoma. J. Neurosurg. 80, 1004–1010 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Packer, R. J. & Finlay, J. L. Medulloblastoma: presentation, diagnosis and management. Oncology 2, 35–45, 48–9 (1988).

    CAS  PubMed  Google Scholar 

  15. Packer, R. J., Sutton, L. N., D'Angio, G., Evans, A. E. & Schut, L. Management of children with primitive neuroectodermal tumours of the posterior fossa/medulloblastoma. Pediatr. Neurosci. 12, 272–282 (1985).

    Article  PubMed  Google Scholar 

  16. Massimino, M. et al. Childhood medulloblastoma. Crit. Rev. Oncol. Hematol. 79, 65–83 (2011).

    Article  PubMed  Google Scholar 

  17. Rutkowski, S. et al. Medulloblastoma in young children. Pediatr. Blood Cancer 54, 635–637 (2010).

    Article  PubMed  Google Scholar 

  18. Rutkowski, S. Current treatment approaches to early childhood medulloblastoma. Expert Rev. Neurother. 6, 1211–1221 (2006).

    Article  PubMed  Google Scholar 

  19. Rutkowski, S. et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N. Engl. J. Med. 352, 978–986 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Partap, S. et al. Medulloblastoma incidence has not changed over time: a CBTRUS study. J. Pediatr. Hematol. Oncol. 31, 970–971 (2009).

    Article  PubMed  Google Scholar 

  21. Curran, E. K., Le, G. M., Sainani, K. L., Propp, J. M. & Fisher, P. G. Do children and adults differ in survival from medulloblastoma? A study from the SEER registry. J. Neurooncol. 95, 81–85 (2009).

    Article  PubMed  Google Scholar 

  22. Fisher, P. G., Burger, P. C. & Eberhart, C. G. Biologic risk stratification of medulloblastoma: the real time is now. J. Clin. Oncol. 22, 971–974 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Raabe, E. H. & Eberhart, C. G. High-risk medulloblastoma: does cmyc amplification overrule histopathology? Pediatr. Blood Cancer 54, 344–345 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Eberhart, C. G. et al. Histopathological and molecular prognostic markers in medulloblastoma: cmyc, Nmyc, TrkC, and anaplasia. J. Neuropathol. Exp. Neurol. 63, 441–449 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Finkelstein-Shechter, T. et al. Atypical teratoid or rhabdoid tumours: improved outcome with high-dose chemotherapy. J. Pediatr. Hematol. Oncol. 32, e182–e186 (2010).

    Article  PubMed  Google Scholar 

  26. Biegel, J. A. et al. Mutations of the INI1 rhabdoid tumor suppressor gene in medulloblastomas and primitive neuroectodermal tumours of the central nervous system. Clin. Cancer Res. 6, 2759–2763 (2000).

    CAS  PubMed  Google Scholar 

  27. Rorke, L. B., Packer, R. J. & Biegel, J. A. Central nervous system atypical teratoid/rhabdoid tumours of infancy and childhood: definition of an entity. J. Neurosurg. 85, 56–65 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Rorke, L. B., Packer, R. & Biegel, J. Central nervous system atypical teratoid/rhabdoid tumours of infancy and childhood. J. Neurooncol. 24, 21–28 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Biegel, J. A., Rorke, L. B. & Emanuel, B. S. Monosomy 22 in rhabdoid or atypical teratoid tumours of the brain. N. Engl. J. Med. 321, 906 (1989).

    CAS  PubMed  Google Scholar 

  30. Lafay-Cousin, L. et al. Central nervous system atypical teratoid rhabdoid tumours: the Canadian Paediatric Brain Tumour Consortium experience. Eur. J. Cancer 48, 353–359 (2011).

    Article  PubMed  Google Scholar 

  31. Finkelstein-Shechter, T. et al. Atypical teratoid or rhabdoid tumours: improved outcome with high-dose chemotherapy. J. Pediatr. Hematol. Oncol. 32, e182–e186 (2010).

    Article  PubMed  Google Scholar 

  32. Taylor, M. D. et al. Familial posterior fossa brain tumours of infancy secondary to germline mutation of the hSNF5 gene. Am. J. Hum. Genet. 66, 1403–1406 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, Y. et al. Embryonal tumor with abundant neuropil and true rosettes (ETANTR) with a focal amplification at chromosome 19q13.42 locus: further evidence of two new instances in China. Neuropathology 31, 639–647 (2011).

    Article  PubMed  Google Scholar 

  34. Ferri Niguez, B. et al. Embryonal tumor with abundant neuropil and true rosettes (ETANTR): a new distinctive variety of pediatric PNET: a case-based update. Childs Nerv. Syst. 26, 1003–1008 (2010).

    Article  PubMed  Google Scholar 

  35. Li, M. et al. Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumours. Cancer Cell 16, 533–546 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pfister, S. et al. Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathol. 117, 457–464 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. McManamy, C. S. et al. Nodule formation and desmoplasia in medulloblastomas-defining the nodular/desmoplastic variant and its biological behavior. Brain Pathol. 17, 151–164 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rutkowski, S. et al. Survival and prognostic factors of early childhood medulloblastoma: an international meta-analysis. J. Clin. Oncol. 28, 4961–4968 (2010).

    Article  PubMed  Google Scholar 

  39. Garre, M. L. et al. Medulloblastoma variants: age-dependent occurrence and relation to Gorlin syndrome-a new clinical perspective. Clin. Cancer Res. 15, 2463–2471 (2009).

    Article  PubMed  Google Scholar 

  40. Stearns, D. et al. cMyc overexpression causes anaplasia in medulloblastoma. Cancer Res. 66, 673–681 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Pomeroy, S. L. et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Al-Halabi, H. et al. Preponderance of sonic hedgehog pathway activation characterizes adult medulloblastoma. Acta Neuropathol. 121, 229–239 (2011).

    Article  PubMed  Google Scholar 

  44. Buonamici, S. et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci. Transl. Med. 2, 51ra70 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Cho, Y. J. et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J. Clin. Oncol. 29, 1424–30 (2011).

    Article  PubMed  Google Scholar 

  46. Ellison, D. W. et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol. 121, 381–396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ellison, D. W. et al. Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J. Clin. Oncol. 29, 1400–1407 (2011).

    Article  PubMed  Google Scholar 

  48. Ellison, D. W. et al. β-catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children's Cancer Study Group Brain Tumour Committee. J. Clin. Oncol. 23, 7951–7957 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kool, M. et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 123, 473–484 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Korshunov, A. et al. Biological and clinical heterogeneity of MYCN-amplified medulloblastoma. Acta Neuropathol. 123, 515–527 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Northcott, P. A. et al. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol. 29, 1408–1414 (2011).

    Article  PubMed  Google Scholar 

  53. Northcott, P. A. et al. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat. Genet. 41, 465–472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Remke, M. et al. Adult medulloblastoma comprises three major molecular variants. J. Clin. Oncol. 29, 2717–2723 (2011).

    Article  PubMed  Google Scholar 

  55. Rudin, C. M. et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med. 361, 1173–1178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Taylor, M. D. et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123, 465–472 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Thompson, M. C. et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J. Clin. Oncol. 24, 1924–1931 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Yauch, R. L. et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 326, 572–574 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kool, M. et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS ONE 3, e3088 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Northcott, P. A. et al. Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathol. 122, 231–240 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Remke, M. et al. FSTL5 is a marker of poor prognosis in non-WNT/non-SHH medulloblastoma. J. Clin. Oncol. 29, 3852–3861 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Taylor, M. D. et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123, 465–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Hamilton, S. R. et al. The molecular basis of Turcot's syndrome. N. Engl. J. Med. 332, 839–847 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Zurawel, R. H., Chiappa, S. A., Allen, C. & Raffel, C. Sporadic medulloblastomas contain oncogenic β-catenin mutations. Cancer Res. 58, 896–899 (1998).

    CAS  PubMed  Google Scholar 

  65. Yokota, N. et al. Role of Wnt pathway in medulloblastoma oncogenesis. Int. J. Cancer. 101, 198–201 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Ng, D. et al. Retrospective family study of childhood medulloblastoma. Am. J. Med. Genet. A. 134, 399–403 (2005).

    Article  PubMed  Google Scholar 

  68. Taylor, M. D. et al. Mutations in SUFU predispose to medulloblastoma. Nat. Genet. 31, 306–310 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Slade, I. et al. Heterogeneity of familial medulloblastoma and contribution of germline PTCH1 and SUFU mutations to sporadic medulloblastoma. Fam. Cancer 10, 337–342 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Brugieres, L. et al. Incomplete penetrance of the predisposition to medulloblastoma associated with germ-line SUFU mutations. J. Med. Genet. 47, 142–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Pastorino, L. et al. Identification of a SUFU germline mutation in a family with Gorlin syndrome. Am. J. Med. Genet. A 149A, 1539–1543 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Taylor, M. D. et al. Failure of a medulloblastoma-derived mutant of SUFU to suppress WNT signaling. Oncogene 23, 4577–4583 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Rubin, J. B. & Rowitch, D. H. Medulloblastoma: a problem of developmental biology. Cancer Cell 2, 7–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Fernandez, L. A. et al. Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma through IGF2-mediated Akt activation. Oncogene 31, 1923–1937 (2012).

    Article  CAS  Google Scholar 

  75. Fernandez, L. A. et al. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev. 23, 2729–2741 (2009).

    Article  CAS  Google Scholar 

  76. Fernandez, L. A., Northcott, P. A., Taylor, M. D. & Kenney, A. M. Normal and oncogenic roles for microRNAs in the developing brain. Cell Cycle 8, 4049–4054 (2009).

    Article  Google Scholar 

  77. Northcott, P. A. et al. The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res. 69, 3249–3255 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hatton, B. A. et al. N-myc is an essential downstream effector of Shh signaling during both normal and neoplastic cerebellar growth. Cancer Res. 66, 8655–8661 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Browd, S. R. et al. N-myc can substitute for insulin-like growth factor signaling in a mouse model of sonic hedgehog-induced medulloblastoma. Cancer Res. 66, 2666–2672 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Kenney, A. M., Widlund, H. R. & Rowitch, D. H. Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development 131, 217–228 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Kenney, A. M., Cole, M. D. & Rowitch, D. H. Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130, 15–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Uziel, T. et al. The miR-1792 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc. Natl Acad. Sci. USA 106, 2812–2817 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pfaff, E. et al. TP53 mutation is frequently associated with CTNNB1 mutation or MYCN amplification and is compatible with long-term survival in medulloblastoma. J. Clin. Oncol. 28, 5188–5196 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Pfister, S. M. et al. Molecular diagnostics of CNS embryonal tumours. Acta Neuropathol. 120, 553–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Korshunov, A. et al. Adult and pediatric medulloblastomas are genetically distinct and require different algorithms for molecular risk stratification. J. Clin. Oncol. 28, 3054–3060 (2010).

    Article  PubMed  Google Scholar 

  86. Pfister, S. et al. Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J. Clin. Oncol. 27, 1627–1636 (2009).

    Article  PubMed  Google Scholar 

  87. Swartling, F. J. et al. Pleiotropic role for MYCN in medulloblastoma. Genes Dev. 24, 1059–1072 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bunt, J. et al. Joint binding of OTX2 and MYC in promotor regions is associated with high gene expression in medulloblastoma. PLoS ONE 6, e26058 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bunt, J. et al. OTX2 directly activates cell cycle genes and inhibits differentiation in medulloblastoma cells. Int. J. Cancer http://dx.doi.org/10.1002/ijc.26474.

  90. Adamson, D. C. et al. OTX2 is critical for the maintenance and progression of Shh-independent medulloblastomas. Cancer Res. 70, 181–191 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. de Haas, T. et al. OTX1 and OTX2 expression correlates with the clinicopathologic classification of medulloblastomas. J. Neuropathol. Exp. Neurol. 65, 176–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Di, C. et al. Identification of OTX2 as a medulloblastoma oncogene whose product can be targeted by all-trans retinoic acid. Cancer Res. 65, 919–924 (2005).

    CAS  PubMed  Google Scholar 

  93. Boon, K., Eberhart, C. G. & Riggins, G. J. Genomic amplification of orthodenticle homologue 2 in medulloblastomas. Cancer Res. 65, 703–707 (2005).

    CAS  PubMed  Google Scholar 

  94. Malkov, V. A. et al. Multiplexed measurements of gene signatures in different analytes using the Nanostring nCounter Assay System. BMC Res. Notes 2, 80 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Geiss, G. K. et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 26, 317–325 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Northcott, P. A. et al. Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples. Acta Neuropathol. 123, 615–626 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Kongkham, P. N. et al. The SFRP family of WNT inhibitors function as novel tumor suppressor genes epigenetically silenced in medulloblastoma. Oncogene 29, 3017–3024 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Nakahara, Y. et al. Genetic and epigenetic inactivation of Kruppel-like factor 4 in medulloblastoma. Neoplasia 12, 20–27 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kongkham, P. N. et al. An epigenetic genome-wide screen identifies SPINT2 as a novel tumor suppressor gene in pediatric medulloblastoma. Cancer Res. 68, 9945–9953 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Kasuga, C. et al. Expression of MAGE and GAGE genes in medulloblastoma and modulation of resistance to chemotherapy. Laboratory investigation. J. Neurosurg. Pediatr. 1, 305–313 (2008).

    Article  PubMed  Google Scholar 

  101. Bertrand, K. C. et al. PCDH10 is a candidate tumour suppressor gene in medulloblastoma. Childs Nerv. Syst. 27, 1243–1249 (2011).

    Article  PubMed  Google Scholar 

  102. Parsons, D. W. et al. The genetic landscape of the childhood cancer medulloblastoma. Science 331, 435–439 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Milde, T. et al. HDAC5 and HDAC9 in medulloblastoma: novel markers for risk stratification and role in tumor cell growth. Clin. Cancer Res. 16, 3240–3252 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Bhatia, B. et al. Tuberous sclerosis complex suppression in cerebellar development and medulloblastoma: separate regulation of mammalian target of rapamycin activity and p27Kip1 localization. Cancer Res. 69, 7224–7234 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Garzia, L. et al. MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS ONE 4, e4998 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Wu, X. et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 482, 529–533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Fan, X. & Eberhart, C. G. Medulloblastoma stem cells. J. Clin. Oncol. 26, 2821–2827 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Wu, X., Northcott, P. A., Croul, S. & Taylor, M. D. Mouse models of medulloblastoma. Chin. J. Cancer 30, 442–449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pei, Y. et al. An animal model of MYC-driven medulloblastoma. Cancer Cell 21, 155–167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kawauchi, D. et al. A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell 21, 168–180 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gilbertson, R. J. & Ellison, D. W. The origins of medulloblastoma subtypes. Annu. Rev. Pathol. 3, 341–365 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Yang, Z. J. et al. Medulloblastoma can be initiated by deletion of patched in lineage-restricted progenitors or stem cells. Cancer Cell 14, 135–145 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Oliver, T. G. et al. Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development 132, 2425–2439 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Wechsler-Reya, R. & Scott, M. P. The developmental biology of brain tumours. Annu. Rev. Neurosci. 24, 385–428 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Wechsler-Reya, R. J. & Scott, M. P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22, 103–114 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Hudson, T. J. et al. International network of cancer genome projects. Nature 464, 993–998 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M. D. Taylor is supported by a Clinician-Scientist Phase II award from the Canadian Institutes of Health Research. Research in the Taylor laboratory is funded by the Pediatric Brain Tumor Foundation and the NIH (R01CA148699). P. A. Northcott is supported by a Roman Herzog Postdoctoral Fellowship. We thank Susan Archer for technical writing assistance.

Author information

Authors and Affiliations

Authors

Contributions

P. A. Northcott and M. D. Taylor researched data for the article, provided substantial contributions to discussion of content, wrote the article, and contributed to review and editing of the manuscript before submission. A. Korshunov contributed to writing the article and to the review and editing of the manuscript before submission. S. M. Pfister reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Michael D. Taylor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Northcott, P., Korshunov, A., Pfister, S. et al. The clinical implications of medulloblastoma subgroups. Nat Rev Neurol 8, 340–351 (2012). https://doi.org/10.1038/nrneurol.2012.78

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2012.78

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer