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Abstract | Neurocritical care bioinformatics is a new field that focuses on the acquisition, storage and analysis 
of physiological and other data relevant to the bedside care of patients with acute neurological conditions 
such as traumatic brain injury or stroke. The main focus of neurocritical care for these conditions relates 
to prevention, detection and management of secondary brain injury, which relies heavily on monitoring 
of systemic and cerebral parameters (such as blood-pressure level and intracranial pressure). Advanced 
neuromonitoring tools also exist that enable measurement of brain tissue oxygen tension, cerebral oxygen 
utilization, and aerobic metabolism. The ability to analyze these advanced data for real-time clinical care, 
however, remains intuitive and primitive. Advanced statistical and mathematical tools are now being applied 
to the large volume of clinical physiological data routinely monitored in neurocritical care with the goal of 
identifying better markers of brain injury and providing clinicians with improved ability to target specific goals 
in the management of these patients. This Review provides an introduction to the concepts of multimodal 
monitoring for secondary brain injury in neurocritical care and outlines initial and future approaches using 
informatics tools for understanding and applying these data to clinical care.
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Introduction
Intensive care medicine has been described as “the art 
of managing extreme complexity”.1 In neurocritical 
care, this complexity is magnified by limitations in the 
clinical assessment of patients with brain injury and dif­
ferent primary and secondary brain injury pathways.2 
Prevention, detection and management of secondary 
brain injury are the main purposes of neurocritical 
care.3,4 These goals are accomplished through neuro­
logical examination, neuroimaging studies (such as CT 
or MRI), and monitoring of a wide range of systemic 
and neurophysiological parameters (called multimodal 
monitoring).5–7 Not surprisingly, the neurocritical 
care unit is a data-intensive environment (Figure 1). 
Utilization of these data in real-time decision-making 
for patient care represents the art of neurocritical care 
practice. Several questions arise regarding multimodal 
monitoring. For instance, the parameters that should be 
measured and how often these measurements should  
be taken are unclear. Furthermore, is every piece of 
information valuable or can some be discarded and, if 
so, which and when? As we develop new ways of moni­
toring, how can multiple parameters be integrated into a 
coherent picture of the patient’s condition?

Neurocritical care bioinformatics is an emerging field 
that attempts to bring order to this chaos and provide 
insight into disease processes and treatment paradigms.8,9 
In this Review, we describe the current state of multi­
modal monitoring, initial forays into the use of neuro­
critical care bioinformatics, and the potential for this 
discipline to shape the future of neurocritical care.
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1	 Describe the importance to neurocritical care of monitoring 
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3	 Describe the role of neurocritical care bioinformatics  

in managing patients with acute brain injury.
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Secondary brain injury
When patients have an acute neurological catastrophe 
such as traumatic brain injury (TBI) or stroke, damage 
to the brain can occur at the time of the initial event. This 
damage is termed primary brain injury, and the under­
lying mechanisms include: intraparenchymal or extra-
axial traumatic or spontaneous hemorrhage; diffuse 
axonal injury (in TBI); and focal or global ischemia from 
acute ischemic stroke or global cerebral ischemia during 
cardiac arrest. Although interventions (such as surgi­
cal hematoma evacuation) can be undertaken to limit 

Key points

■■ Monitoring for secondary brain injury is a fundamental aspect of neurocritical care

■■ Advances in neuromonitoring technologies have been profound and now include 
the ability to directly monitor brain oxygenation, cerebral blood flow, and cerebral 
metabolism in, essentially, real time

■■ Despite these advances, data from bedside monitors in neurocritical care are 
evaluated by clinicians in much the same way as 40 years ago

■■ Informatics has fundamentally changed many fields in medicine including 
epidemiology, genetics and pharmacology

■■ New data-acquisition, storage and analytical tools are now being applied to 
neurocritical care data to harness the large volume of data now available  
to clinicians

■■ Neurocritical care bioinformatics is an emerging field that will require collaboration 
between clinicians, computer scientists, engineers, and informatics experts to 
bring user-friendly, real-time advances to the patient bedside

Figure 1 | The neurocritical care environment. The image shows a neurocritical 
care bed at San Francisco General Hospital, CA, USA. The neurocritical care unit is 
a data-intensive and clinically complex environment, as indicated by the presence 
of the patient, two nurses, a respiratory therapist, and multiple bedside devices 
and monitors including a mechanical ventilator, multiple pumps for intravenous 
medications, and separate computerized devices for measuring levels of 
intracranial pressure, brain tissue oxygen tension, jugular venous oxygen 
saturation, and cerebral blood flow. An overhead monitor displays these data 
continuously (background in green), and a computerized bedside charting system 
(foreground) is used to automatically and manually record this and other 
information into the medical record. Despite the volume of information, charts and 
monitors display and record raw data generally without advanced analysis. 
Permission obtained from the American Academy of Neurology © Hemphill, J. C. & 
De Georgia, M. American Academy of Neurology [online], http://www.aan.com/
news/?event=read&article_id=6972 (2008). 

or reverse primary brain injury, much of the primary 
damage may be irreversible. In most acute neurocritical 
care conditions, however, this primary brain injury initi­
ates a cascade of biochemical events that are, at least at 
onset, reversible. This process is termed secondary brain 
injury and its management is of fundamental importance 
to the treatment of patients with TBI, ischemic and 
hemorrhagic stroke, and global cerebral ischemia.10

Secondary brain injury can generally be considered 
as two related concepts: cellular injury cascades and 
secondary brain insults (SBIs). An example of the cel­
lular injury cascade is the ischemic cascade in which 
events such as excitotoxicity, intracellular calcium influx, 
and free radical membrane damage are ongoing. Hence, 
ultra-early ischemic stroke treatment via revasculariza­
tion of an occluded intracranial artery with thrombolytic 
agents is intended to restore perfusion before permanent 
cell death, thereby reversing this secondary brain injury. 
In addition to initiating ischemic and apoptotic cell 
injury cascades, primary brain injuries make injured, 
but salvageable, brain tissue vulnerable to SBIs. These 
insults are usually well-tolerated but, when occurring in 
an injured brain, can lead to further cell death and wor­
sened patient outcome. Hypotension, hypoxia and hypo­
glycemia are all examples of SBIs in which decreased 
substrate delivery to an injured brain further worsens 
injury.4 On the other hand, fever, seizures and hyper­
glycemia are examples of SBIs in which increased meta­
bolic demand may outstrip compensatory mechanisms 
and result in further injury.11,12

Current management paradigms for TBI, stroke, 
status epilepticus and, essentially, all acute brain dis­
orders encountered in neurocritical care, center around 
the goal of limiting secondary brain injury. For example, 
surgical evacuation of a subdural hematoma is intended 
to limit tissue damage from brain herniation or ische­
mic damage from low cerebral perfusion. In patients 
with subarachnoid-hemorrhage-related vasospasm, the 
use of pressors to increase the systemic blood-pressure 
level is intended to increase blood flow and, therefore, 
oxygen delivery to vulnerable brain tissue. However, 
effective management of secondary brain injury relies on 
the ability to detect its occurrence, monitor its progress, 
and avoid overtreatment with interventions that often 
have their own risks. Previous approaches have involved 
monitoring of systemic parameters, such as blood-
pressure level and peripheral oxygen saturation, with the 
hope of adequately protecting the brain from secondary 
injury, whereas current and future approaches in neuro­
critical care emphasize the ability to directly monitor 
the brain and to develop better tools to integrate these 
sometimes complex measures.

Multimodal monitoring
Intracranial pressure
Intracranial pressure (ICP) is the most commonly moni­
tored brain-specific physiological parameter in the neuro­
critical care unit (Box 1). Vast experience exists with ICP 
monitoring in TBI, aneurysmal subarachnoid hemor­
rhage, ischemic stroke, and intracerebral hemorrhage.13 
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Although no prospective randomized trials have con­
firmed a benefit from ICP monitoring (or, indeed, from the 
use of any patient monitor), ICP monitoring and manage­
ment is, nevertheless, generally considered standard, and 
guidelines exist for both TBI and stroke.14–16

The gold standard device for monitoring ICP is a ven­
tricular catheter attached to an external micro-strain 
gauge. The device can be re-zeroed at any time and can 
also be used to drain cerebrospinal fluid to treat elevated 
ICP. Ventricular catheters are usually set in a position to  
display ICP, with drainage performed intermittently  
to maintain ICP, usually <20 mmHg. These devices can 
be inserted at the time of surgery or in the intensive care 
unit (ICU). The zero point for the ICP transducer is the 
tragus of the ear. Potential complications associated with 
this device are bleeding and infection.17,18

An intraparenchymal fiberoptic device, inserted at the 
bedside via a cranial bolt, is an alternative way to monitor 
ICP. The device is connected to a separate bedside monitor to  
continuously display the ICP waveform. Several types are 
available and most have only modest measurement drift, 
independent of the duration of monitoring. The risk of 
infection and bleeding are lower than for ventricular 
catheters, but the inability to re-zero intraparenchymal 
fiberoptic ICP monitors after placement or drain the 
cerebrospinal fluid are disadvantages.19,20

Cerebral perfusion pressure
Current Brain Trauma Foundation (BTF) guidelines for 
management of severe TBI recommend maintaining ICP 
<20 mmHg. Guidelines for other disorders such as intra­
cerebral hemorrhage have generally followed this thres­
hold despite fewer disease-specific data.16,21 The cerebral 
perfusion pressure (CPP) is the difference between sys­
temic mean arterial pressure and ICP (ideally using the 
same zero reference point for ICP and arterial pressure). 
The CPP is the driving pressure for cerebral blood flow 
across the microvascular capillary bed.17,18 Since 1995, 
treatment approaches have emphasized ensuring an 
adequate CPP level to avoid secondary cerebral ischemia 
and as a treatment for elevated ICP. With intact cerebral 
autoregulation, increasing the CPP can result in com­
pensatory vasoconstriction, thereby reducing cerebral 
blood volume and ICP.22 This approach has been called 
‘CPP therapy’. Despite its physiological appeal, the sole 
randomized controlled trial comparing CPP therapy 
(CPP >70 mmHg) and ICP therapy (ICP <20 mmHg) 
found no difference in outcomes, probably because of 
increased pulmonary complications in the CPP therapy 
group.23 However, existing studies have moved beyond 
this ‘one size fits all’ CPP target and have emphasized that 
individual patients may have different CPP thresholds 
depending on the degree of autoregulation and intra­
cranial compliance.22–25 For example, Howells found that if 
autoregulation was impaired, treatment targeting a higher 
CPP (>70 mmHg) resulted in worse functional outcomes 
in patients with TBI than did treatment targeting a lower 
CPP (50–60 mmHg). If autoregulation was intact, high 
CPP levels resulted in improved outcomes.25 BTF guide­
lines now recommend avoidance of a CPP <50 mmHg and 

to consider cerebral autoregulation status when selecting 
a CPP target in a specific patient.21 Unfortunately, current 
standard methods of viewing, recording and analyzing 
ICP and CPP data do not allow bedside clinicians to easily 
assess cerebral autoregulation. 

Brain tissue oxygen tension
New methods of advanced neuromonitoring allow 
more-direct measurement of cerebral oxygenation and 
metabolism. Monitoring of brain tissue oxygen tension 
(PbtO2) involves placement of a micro Clark electrode 
(closed polarographic oxygen probe with reversible 
electromagnetic actions and semipermeable membrane) 
into the brain parenchyma using a method similar to 
that for placement of an intraparenchymal fiberoptic 
ICP monitor.26 PbtO2 values <15 mmHg are associated 
with worsened outcome in patients with TBI, although 
prospective trials of improving PbtO2 have not yet been 
performed.27–29 Brain temperature is also measured con­
currently, although the specific effect of brain tempera­
ture (as opposed to body temperature) in fever-related 
secondary brain injury has not been well-studied.28,30

Cerebral blood flow
Continuous monitoring of cerebral blood flow (CBF) is 
intuitively appealing, although, up until the past few years, 
this approach was not practical at the bedside. A currently 
available method of continuous quantitative CBF moni­
toring uses the principle of thermal diffusion and involves 
inserting a probe with two small thermistors—a proximal 
one set at tissue temperature and a distal one that is heated 
by 2 °C above this tissue temperature—into the brain. The 
distal thermistor measures the tissue’s ability to dissipate 
heat: the greater the blood flow, the greater the dissipa­
tion of heat. A microprocessor then converts this infor­
mation into a measure of CBF in ml/100 g/min.31 CBF 
monitoring has been used in patients with head trauma32 
or subarachnoid hemorrhage,33 and during neurosurgical 
procedures.34 Because many interventions in neurocritical 

Box 1 | Neurocritical care physiological parameters

Parameters are given as the normal reference ranges  
or values.

General parameters

■■ Systolic blood-pressure level: >90 mmHg

■■ Mean arterial blood-pressure level: >80 mmHg

■■ Systemic arterial oxygen saturation: >94%

■■ End-tidal carbon dioxide concentration: 35–40 mmHg

■■ Heart rate: 80–100 bpm

■■ Respiratory rate: 12–16 breaths per min

Brain parameters

■■ Intracranial pressure: <20 mmHg

■■ Brain tissue oxygen tension: >15 mmHg

■■ Jugular venous oxygen saturation: 55–75%

■■ Cerebral blood flow: 55 ml/100 g/min (global); 
≈25 ml/100 g/min (white matter)

■■ Lactate:pyruvate concentration ratio: <40
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care are based on the principle of augmenting arterial 
blood flow, information provided by CBF monitoring can 
be helpful in guiding clinical management.35

Jugular venous oxygen saturation
By placing a small fiberoptic catheter in the internal jugu­
lar vein and advancing the tip to the jugular bulb, jugular 
venous oxygen saturation (SjvO2) can be measured.36 SjvO2 
represents a measure of global cerebral oxygen extrac­
tion. Values <50% represent ‘ischemic desaturations’ 
and are associated with worsened outcome in patients 
with TBI. Values >75% represent luxury perfusion, in 
which blood flow substantially exceeds that necessary 
for tissue metabolic demand, and are similarly associ­
ated with poor outcome in patients with TBI.36,37 As a 
global measure, SjvO2 monitoring is complementary to 
focal monitoring of PbtO2.

Cerebral microdialysis
Cerebral microdialysis involves placement of a small 
catheter into the brain parenchyma, either during surgery 
or through a burr hole and secured by a cranial bolt.38 
Extracellular concentrations of ischemic metabolites, 
such as lactate and pyruvate, can then be measured. The  
lactate:pyruvate ratio is currently the best marker of  
the brain redox state and an early biomarker of secon­
dary ischemic injury; lactate:pyruvate ratio >40 is indica­
tive of cerebral metabolic crisis.39 Glycerol, a marker of 
cell membrane damage, and glutamate, an excitatory 
amino acid, provide additional evidence of developing 
brain injury.40 It is important to remember that ischemic 
hypoxia is just one of the many types of brain hypoxia 
that can be detected in the injured brain.41

A limitation to microdialysis is that fluid transports 
slowly through the catheter, and measured values rep­
resent cerebral events that occurred 20‑60 min earlier, 
depending on the collection interval. Microdialysis offers 
the potential for measurement of multiple new para­
meters, but pattern recognition is difficult and clinical 
studies are limited. The use of new, larger-pore membranes 
provides the possibility of measuring the broader neuro­
inflammatory cascades elicited by TBI.42 Microdialysis 
might also be used for profiling of new neuroprotective 
drugs. Presence of any drug in the extracellular fluid does 
not guarantee a neuroprotective effect: if a drug cannot 
cross the blood–brain barrier, the brain will not be tar­
geted. A better understanding of the concentrations of 
any drug found in the brain tissue is an important step in 
considering new therapeutic pharmacological candidates 
for neuroprotection. At present, microdialysis is generally 
considered only a research tool, despite being increasingly 
used in the clinic to guide management.43

Summary
In addition to the above parameters, many other tools may 
be used for monitoring in neurocritical care. Continuous 
EEG monitoring using either surface or intracortical 
electrodes is increasingly used for the detection of sub­
clinical seizures or evolving ischemia.44,45 Near-infrared 
spectroscopy for brain oxygenation, brain compliance 

monitoring, and quantitative pupillometry are being con­
sidered as emerging tools.44,46–48 Despite the availability of 
many tools for monitoring relevant biological processes 
in neurocritical care, important questions remain regard­
ing what they measure, how they relate to the familiar 
parameters such as ICP and CPP, and how they should 
be integrated into bedside clinical care. In fact, it was pre­
cisely these questions about how to integrate advanced 
neuromonitoring methods that clearly illustrated the need 
for newer bioinformatics approaches, including improved 
acquisition and recording of data, more in-depth analysis, 
and translation of data for patient care.49

Neurocritical care bioinformatics
Acquisition, integration and synchronization
Although the ability to monitor the body and the brain 
in critical care has advanced tremendously over the 
past few decades, methods of recording these data for 
bedside use, archiving it for future review, and analyzing 
it remain primitive and underutilized.50 In fact, paper 
charts are still the most commonly used data record in 
the ICU and have some advantages: familiarity with the 
format, the ability to visualize data in a predictable way 
(usually one 2 ft by 3 ft sheet for a 24 h period), and the 
inherent validation that occurs when transcribing data. 
Electronic medical records (EMRs) have the potential to 
reduce medical errors, increase ease of record keeping, 
and provide more-reliable documentation for regulatory 
oversight than traditional paper charts.51,52 Nevertheless, 
most commercial bedside EMRs merely recapitulate the 
format of paper charts, albeit in electronic form, without 
providing additional analytical power. Data logging is 
still done laboriously and intermittently, often hourly. 

Although this data logging can provide some general 
trend information, it necessarily obscures the underlying 
data structure, especially information about waveform 
morphology. If data is sampled too infrequently or for 
too short a duration then information can be missed. 
Physiological signals can have information content in 
frequencies exceeding 0.2 kHz, but information can be 
lost when data below 0.5–1 kHz is sampled over a short 
time (1–2 ms).53 Moreover, even if the individual devices 
are capable of recording higher-time-resolution data, 
without some way to store and review this data, it is basi­
cally useless; the information scrolls across the screen 
and disappears forever. Thus, in most neurocritical care 
units, clinicians can view monitored physiological data 
continuously by watching the bedside monitor but, 
once away from the bedside, they only have access to 
intermittently-recorded values. This disconnect empha­
sizes that collecting and archiving data is the crucial first 
step to information management.54

Integration of data is the next step in neurocritical 
care bioinformatics. In any ICU, finding a comprehen­
sive set of all available physiological data (as well as 
data from patient records, laboratory studies, imaging 
findings and so on) for a patient in one place is virtu­
ally impossible. For the most part, individual monitors 
are self-contained, stand-alone units. This inability to 
integrate physiological signal data simultaneously into 
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one searchable data set has been a major limiting factor 
in the ability to use intensive care monitoring data for 
more-advanced real-time analysis. Many reasons exist 
for this poor data integration, but the lack of inter­
operability (for example, the inability of different infor­
mation technology systems and software applications 
to exchange data accurately and consistently) has been 
the main problem. Unlike the interoperable ‘plug and 
play’ environment of modern computers and consumer 
electronics, most acute-care medical devices are not 
designed to interoperate. In 2009, the concept of an 
‘integrated clinical environment’ was adopted by the 
American Society for Testing and Materials and now 
serves as the basic template for future development of 
medical devices and systems.55

Two other fundamental aspects of high-resolution data 
acquisition relate to data integrity with regard to timing 
and artifact detection. Integration of physiological data 
is only meaningful when combined with high-resolution 
time synchronization. Without a ‘master clock’ ensuring 
that all the values and waveforms acquired at the same 
time ‘line up’ exactly in synchronization, interpreting the 
information and understanding the inter-relationships is 
difficult, if not impossible.

Finally, when all data produced by a monitor are 
recorded, some values are likely to be artifacts. In fact, that 
artifactual data occurs frequently in the ICU is taken for 
granted: a transducer is moved from a patient’s bedside, 
a stopcock is opened to drain cerebrospinal fluid thereby 
rendering the recorded value inaccurate, a monitor is 
turned off and on in the context of patient transport. 
Ironically, when using a paper chart these values are 
‘cleaned’ by bedside nurses who never enter them because 
of their obvious artifactual nature. However, when using 
a high-resolution data-acquisition system that might 
record values 60 times a second or more, automated 
data-cleaning algorithms are needed to avoid interpret­
ing artifactual data as real. Thus, while data acquisition 
may seem straightforward to clinicians whose interests 
lie in interpreting patient data for prognosis and treat­
ment, many fundamental barriers must still be overcome 
to ensure that these data are accurate, real and integrated 
before advanced analysis can even be considered.56

Once a comprehensive database of integrated, precisely 
time-stamped physiological signals is created (without 
artifact), complemented by relevant clinical observa­
tions, laboratory results, and imaging data, clinicians can 
then begin to formulate and test hypotheses about the 
underlying dynamic physiological processes in patients. 
Systems are being designed specifically for this purpose, 
and some commercially available software and hardware 
solutions are emerging.57 

Most systems used for early studies have, however, 
been ‘home-grown’, one-off systems that are built within 
an institution to serve the needs of researchers with a 
specific interest in physiological informatics.9,54,58,59 These 
systems are generally in one of two forms: a kiosk-type 
system in which a computerized data-acquisition unit is 
brought to the patient’s bedside (Figure 2) and connected 
to the output ports of various monitors, or a distributed 

system in which data from bedside monitors are sent 
continuously to a remote server.59 A kiosk system is less 
expensive than a distributed system, but only allows data 
acquisition from one patient at a time and then only 
when the system is connected and turned on. Distributed 
systems are costlier because they require set-up in mul­
tiple ICU beds and a remote server for storage, but they 
are better for large-scale neurocritical care bioinformatics 
work than are kiosk systems. Barriers related to data 
security and systems architecture, however, have made 
implementation, especially across multiple hospitals, 
challenging. Certain groups, such as the BrainIT (Brain 
monitoring with Information Technology) consortium, 
have overcome this barrier in the short term by allowing 
investigators from various sites to add data to a group 
database voluntarily.60,61

Translating data into clinical information
Ultimately, neurocritical care bioinformatics is intended 
to bring practical patient-based information to the bed­
side to be used in clinical decision-making. Some of 
the initial uses have tackled relatively modest questions 
compared with potential future uses such as predictive 

Figure 2 | Kiosk-type critical care data acquisition system. 
A mobile system is moved to the bedside and attached to 
various monitoring devices. Built-in software may provide 
advanced analysis for real-time decision support. 
Disadvantages of these systems are that usually only one 
patient can be monitored at a time, and data are not 
acquired unless the device is manually connected. Image 
courtesy of Richard Moberg, CNS Technology, Moberg 
Research, Philadelphia, PA, USA.
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modeling of patient disease states. However, this pre­
liminary work does demonstrate that analysis of patient 
physiological data, rather than just the usual display of 
raw data in a bedside chart, can bring unique insights 
that are clinically useful and can be implemented with 
current technology. For example, rather than just display­
ing the maximum daily temperature as the measure of 
fever, calculating the area under the curve (AUC) above a 
specific cut-off (such as >38.5 °C) provides a more-robust 
measure of ‘dose’ of fever, which can be used to track the 
effectiveness of interventions such as fever control or 
hypothermia therapy.62 

Although cerebral autoregulation may be an important 
factor in determining optimal cerebral perfusion after 
acute brain injury, this process is difficult to determine 
from raw data at the bedside. The pressure reactivity index 
(PRx) is a moving correlation coefficient between mean 
arterial pressure and ICP that provides information about 
whether cerebral pressure autoregulation is intact, and 
has been used to determine the optimal CPP for patient 
management after TBI and intracranial hemorrhage.63,64 

AUC ‘dose’ and PRx are both examples of indices cal­
culated using informatics that add information to patient 
assessment. Neither uses sophisticated analytical tools to 
tackle complex multivariable modeling. However, to even 
use these simple informatics applications, digital data 
acquisition and real-time data analysis are required.

Advanced bioinformatics
The promise of neurocritical care bioinformatics lies  
in the potential to use advanced analytical techniques on 
high-resolution multimodal physiological data to improve 
patient outcome. The hope is that these more-advanced 
analytical tools will lead to better understanding of the 
complex relationships between various physiological 
parameters, improve the ability to predict future events 
(not only outcome, but also short-term events such as 
elevated ICP or low PbtO2), and thereby provide targets 
for individualized treatment in real time.65 Advanced 
analysis of physiological critical care data can be divided 
into two general approaches: data-driven methods and 
model-based methods (Box 2).

Data-driven methods
Data-driven methods can be thought of as using exist­
ing data to learn to predict an outcome of interest on the 

basis of previously unseen data. Analysis is trained on 
existing data sets in which outcomes are known (super­
vised learning) or analyzed in an exploratory manner 
(unsupervised learning) to find unexpected relationships 
between parameters through ‘data mining’. Examples of 
supervised learning methods include regression analy­
sis, decision trees, and neural networks. An example of 
unsupervised learning is cluster analysis.

Regression analysis
Regression is a familiar tool that attempts to fit a linear 
model to parameters on the basis of a provided outcome, 
with the nature of this outcome determining the specific 
type of regression analysis to be performed. Continuous 
outcomes use linear regression, while binary outcomes 
use logistic regression and categorical ordinal outcomes 
can be analyzed using ordinal regression. Multivariable 
regression analysis is routinely used in epidemiological 
studies of disease prediction and can also be applied to 
physiological data. Hemphill et al.27 used lagged regres­
sion analysis on time-series physiological data to identify 
an association between changes in the fraction of inspired 
oxygen (FiO2) or mean arterial pressure and subsequent 
changes in PbtO2 in patients with intracerebral hemor­
rhage. Although the concept of multivariable analysis 
on physiological parameters is appealing, problems 
are associated with this approach. Regression analysis 
assumes that all data are of value, presents challenges for 
the inclusion of time-series data, and generally assumes 
a linear relationship between parameters (or their trans­
formations) and outcome. Consequently, other analytical 
methods may ultimately be of more use in neurocritical 
care bioinformatics.

Decision tree analysis
Decision trees are useful to analyze multivariate data, par­
ticularly those with discrete inputs (sex, injury type, drug 
dosage), and have been implemented to refine estimates 
of prognosis.66 For example, a set of patients might be 
grouped together at the ‘top’ of a tree. At each branch, 
the set can be divided into two (for example, whether a 
patient is female or male) or more (for example, did they 
receive 5 mg, 10 mg or 15 mg of drug? The nature of the 
rules can be optimized according to various algorithms. 
The final subsets are evaluated on the basis of an end point 
(for example, females who received 5 mg of drug showed 
70% improvement, females who received 10 mg showed 
80% improvement, and so on). Andrews and co-workers67 

used this technique to identify subgroups of patients with 
head injury who had a poor prognosis. Figure 3 demon­
strates how decision trees can be visually informative for 
clinicians for the prediction of TBI outcome. In particular, 
decision trees show how an individual patient sits within 
a well-developed predictive model.

Neural networks
Artificial neural networks are powerful tools for multi­
factorial classification and multivariate nonlinear analy­
sis. Modeled after neurophysiological learning, neural 
networks have the ability, through iterative training, to 

Box 2 | Neurocritical care bioinformatics parameters

■■ Arithmetic (simple): cerebral perfusion pressure (mean 
arterial pressure minus the intracranial pressure)

■■ Index (calculation): fever burden (area under the curve)

■■ Index (analytical): pressure reactivity index (PRx, 
moving correlation coefficient)

■■ Data-driven methods (unsupervised): hierarchical 
cluster analysis (for example, heat map)

■■ Data-driven methods (supervised): decision trees, 
neural networks

■■ Model-based methods: dynamical systems models, 
dynamic Bayesian networks
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model complex data relationships and to discern pat­
terns. With neural networks, Vath and co-workers could 
accurately predict outcomes after TBI for different com­
binations of clinical and neuromonitoring parameters.68 
Hidden patterns can be uncovered and displayed using 
Kohonen self-organizing maps. Using this technique with 
microdialysis data, Nelson and co-workers69 showed that 
highly individualistic and complex patterns or ‘states’ 
exist. Similarly, using a dimension reduction technique 
called hierarchical clustering (which was developed for 
genomics to simplify data sets), Cohen and co-workers70 
identified specific clusters of physiological data in trauma 
patients from which distinct patient states—described 
as at risk of infection, multiorgan failure, or death 
—could be defined. Prognostic patterns too complex to 
visualize could then be recognized and displayed using 
dendrograms and heat maps. Figure 4 shows an example 
of cluster analysis in which a self-organizing map—a 
tool widely used in genetics and genomics—is used to 
identify unexpected associations between physiological 
parameters across patients with TBI.

Complex systems analysis
Techniques for the analysis of nonlinear systems 
(complex systems analysis) have emerged from the 
mathematical and engineering sciences.71 Time series 
analysis, for example, measures variation over time and 
has been most often applied to monitoring of heart rate 
by evaluating intervals between consecutive QRS com­
plexes. Decreased variability is thought to reflect system 
isolation and a reduced ability to respond to perturba­
tions. Decreased heart rate variability is associated with 
poor outcome in patients with myocardial infarction72 
or heart failure.73 Similarly, reduced ICP variability may 
be a better predictor of outcome than is the measure 
usually displayed at the bedside; namely, mean ICP.74 
Frequency domain analysis displays the contributions 

of each sine wave as a function of its frequency (using 
Fourier transformation). The result is termed spectral 
analysis. Changes in spectral heart rate variability have 
been demonstrated in hypovolemia,75 hypertension,76 
coronary artery disease,77 renal failure,78 and depth of 
anesthesia, among others.79 

Approximate entropy (ApEn) provides a measure of 
the degree of randomness within a series of data. Heart 
rate ApEn decreases with age80 and is predictive of atrial 
fibrillation.81 Hornero and co-workers82 showed that 
ICP ApEn decreases with ICP elevations >25 mmHg.
Papaioannou and co-workers83 also demonstrated that 
among critically ill patients, nonsurvivors had lower 
heart rate ApEn than survivors. As ApEn calculations can 
be sensitive to the length of the data series (especially 
with ‘short and noisy’ data sets), a modification, termed 
sample entropy (SampEn), was introduced.84 Using this 
approach, Lake and co-workers85 showed that heart 
rate entropy falls before clinical signs of neonatal sepsis 
become apparent.

Detrended fluctuation analysis is a technique for des­
cribing fractal scaling behavior of variability in physio­
logical signals (similar patterns of variation across 
multiple timescales). Altered fractal scaling of the ICP 
signal is associated with poor outcome.86 Hopefully, the 
study of normal and pathological dynamics using an array 
of these complex systems analysis methods will provide 
unique insights into normal physiological relationships 
and the pathobiology of critical illness, which could lead 
to new mathematical models of disease prediction that are 
more accurate and realistic than existing models.87

Model-based methods
Conceptualization of patients as existing in physio­
logical and pathophysiological states has led to the idea 
that therapies may need to be redirected toward facilitat­
ing transitions toward favorable physiological states, as 
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Figure 3 | Decision tree analysis for prediction of outcome after traumatic brain injury. The structure of the decision tree is 
determined from analyzed parameters rather than the usual clinical factors and cut-offs, which explains why admission 
pupils (that is, the size and reactivity of a patient’s pupils on admission to the clinic) comes before age, Glasgow Coma 
Scale score, or grade of injury. Patients ‘enter’ the tree via the top node (admission pupils) and then are subsequently 
parsed into tree ‘branches’ on the basis of successive parameters until they reach a final terminus and an associated 
outcome prediction. Numbers in the outcome boxes reflect the total number of cases for that outcome (n) and the number 
of misclassified cases (m); decimals appear due to pruning of the tree (n/m). Permission obtained from the American 
Association of Neurosurgeons © Andrews, P. J. et al. J. Neurosurg. 97, 326–336 (2002).
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opposed to ‘fixing’ particular physiological variables.88,89 
These states and the transitions between them are invisi­
ble to clinicians using current paper or spreadsheet-
based ICU patient records, but may be assessed using 
model-based analytical methods borrowed from other 
scientific disciplines.

Dynamical system models
Dynamical system models describe, on the basis of classic 
mechanics such as pressure–volume–flow relationships, 
how systems evolve over time. For example, Ursino and 
co-workers90 modeled the interaction between cere­
bral vascular reserve, cerebral hemodynamics during 
arterial pressure changes, and relationships between 
CPP and autoregulation. Although dynamical system 
modeling is useful, the drawback is that most, if not all, 
biological systems behave in a nonlinear rather than a 

linear manner. In nonlinear systems, small changes can 
cause disproportionately large responses because the 
response is not simply the sum of individual response to 
each stimuli. Biological systems require data analysis that 
incorporates all interconnections and coupling between 
organ systems, and this approach may be conceptually 
better suited to the complex environment of neurocritical 
care.91–93 A degree of intrinsic complex and chaotic 
behavior also exists. While this behavior can be captured 
to some extent with dynamical system models, the deter­
ministic nature of these systems raises concerns about 
accounting for all relevant biological interactions. 

Dynamic Bayesian networks
Given the complexity of critical care data, a systematic 
real-time classification process for understanding 
a patient’s condition is needed. One approach uses 
Bayesian inference, in which uncertainty is described 
by probabilities. To identify a diagnostic state, each 
possible state is assigned a probability that reflects the 
relative belief of it being the patient’s actual state. These 
beliefs are then updated with empirical data and the 
relative likelihoods of the observations are weighed via 
Bayes rule. Posterior probabilities of a patient’s state 
membership are systematically generated and embody 
our best guess as to the patient’s current diagnostic 
state. Transitions between states can be predicted using 
dynamic Bayesian networks.94 Classification models, the 
collection of diagnostic states, can also take on structure 
that indicates relationships between states, such as partial 
orderings.95 Further techniques have been developed to 
tackle the ill-posed inverse problem, which arises when 
two diagnostic states cannot be distinguished from the 
information provided by the observable data.96 

A clinically relevant use of Bayesian neural networks to 
predict a change in patient state is the Avert-IT project,97 
which is being undertaken by the BrainIT European 
neurocritical care informatics consortium. Avert-IT 
seeks to use physiological, demographic and clinical 
data from patients with TBI across multiple centers to 
create a prediction index for the subsequent occurrence 
of hypotension. Rather than using a single parameter, 
this concept might be considered as analogous to clini­
cal intuition, in which a patient is identified as at risk 
for transition from one state (stable) to another state 
(hypotensive and at risk of secondary brain injury).

Conclusions
Multimodal monitoring of physiological parameters 
related to pressure, flow and metabolism is now routinely 
used in neurocritical care for detection and management 
of secondary brain injury. Despite major advances over 
the past decades in the ability to monitor the brain, clini­
cians archive and analyze this data in much the same way 
as in the 1960s. The availability of high-resolution data-
acquisition tools and the success of advanced informatics 
in other areas of medicine, such as epidemiology, genetics 
and pharmacology, have led to interest in the development 
of neurocritical care bioinformatics as a way to provide 
new insights into the complex physiological relationships 
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Figure 4 | Self-organizing heat map of physiological variables for neurocritical care. 
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previously unrecognized ICP elevations during bedside suctioning in this set of 
patients with TBI who were mechanically ventilated.9 Abbreviations: ABP, arterial 
blood pressure, CPP, cerebral perfusion pressure; ETCO2, end tidal carbon dioxide; 
ICP, intracranial pressure; MAP, mean arterial blood pressure; O2, oxygen; PbtO2, 
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oxygen saturation; TBI, traumatic brain injury. With kind permission from Springer 
Science+Business Media © Sorani, M.D. et al. Neurocrit. Care 7, 45–52 (2007).
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in patients with acute brain injury. This emerging field 
will require a coordinated effort involving clinicians, engi­
neers, computer scientists, and experts in informatics and 
complex systems analysis, as well as industry to develop 
tools that can be used to improve data visualization and 
provide real-time, user-friendly advanced data analysis 
that can be applied clinically at the bedside of patients in 
the neurocritical care unit.
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