Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of asymmetric and symmetric dimethylarginines in renal disease

Abstract

Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthases. By inhibiting nitric oxide formation, ADMA causes endothelial dysfunction, vasoconstriction, elevation of blood pressure, and aggravation of experimental atherosclerosis. Levels of ADMA and its isomer symmetric dimethylarginine (SDMA), which does not inhibit nitric oxide synthesis, are both elevated in patients with kidney disease. Currently available data from prospective clinical trials in patients with chronic kidney disease suggest that ADMA is an independent marker of progression of renal dysfunction, vascular complications and death. High SDMA levels also negatively affect survival in populations at increased cardiovascular risk, but the mechanisms underlying this effect are currently only partly understood. Beyond glomerular filtration, other factors influence the plasma concentrations of ADMA and SDMA. Elevated plasma concentrations of these dimethylarginines might also indirectly influence the activity of nitric oxide synthases by inhibiting the uptake of cellular L-arginine. Other mechanisms may exist by which SDMA exerts its biological activity. The biochemical pathways that regulate ADMA and SDMA, and the pathways that transduce their biological function, could be targeted to treat renal disease in the future.

Key Points

  • Circulating levels of asymmetric dimethylarginine (ADMA) are regulated by its release from methylated proteins, glomerular filtration, and enzymatic degradation by dimethylarginine dimethylaminohydrolase (DDAH)

  • In patients with renal diseases, the loss of DDAH activity contributes more to elevated ADMA concentrations than does reduced glomerular filtration

  • ADMA levels are a predictor of all-cause mortality, major cardiovascular and cerebrovascular events, and progression of renal disease

  • Symmetric dimethylarginine (SDMA) is more abundant than ADMA in patients with chronic kidney disease

  • SDMA has emerged as an endogenous marker of renal function, as its levels are closely related to glomerular filtration rate

  • SDMA has been viewed as a biologically inert molecule; however, strong evidence now indicates a role for both ADMA and SDMA in cardiovascular and cerebrovascular diseases

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of pathways related to methylarginine biosynthesis and metabolism.
Figure 2: Pathological and physiological events that lead to elevated ADMA levels in patients with renal disease.
Figure 3: Results of prospective clinical trials that assessed ADMA levels in patients with renal diseases.
Figure 4: Pathological and physiological mechanisms underlying the associations between levels of dimethylarginines and both vascular injury and renal disease.

Similar content being viewed by others

References

  1. Kakimoto, Y. & Akazawa S. Isolation and identification of NG,NG- and NG,N′G-dimethylarginine, Nɛ-mono-, di-, and trimethyllysine, and glucosylgalactosyl- and galactosyl-delta-hydroxylysine from human urine. J. Biol. Chem. 245, 5751–5758 (1970).

    CAS  PubMed  Google Scholar 

  2. Paik, W. K. & Kim, S. Protein methylation: chemical, enzymological, and biological significance. Adv. Enzymol. Relat. Areas Mol. Biol. 42, 227–286 (1975).

    CAS  PubMed  Google Scholar 

  3. Vallance, P., Leone, A., Calver, A., Collier, J. & Moncada, S. Accumulation of an endogenous inhibitor of NO synthesis in chronic renal failure. Lancet 339, 572–575 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Kakimoto, Y. Methylation of arginine and lysine residues of cerebral proteins. Biochim. Biophys. Acta 243, 31–37 (1971).

    Article  CAS  PubMed  Google Scholar 

  5. Bedford, M. T. & Clarke, S. G. Protein arginine methylation in mammals: who, what, and why. Mol. Cell 33, 1–13 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Böger, R. H. et al. Biochemical evidence for impaired nitric oxide synthesis in patients with peripheral arterial occlusive disease. Circulation 95, 2068–2074 (1997).

    Article  PubMed  Google Scholar 

  7. Teerlink, T. et al. HPLC analysis of ADMA and other methylated L-arginine analogs in biological fluids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 851, 21–29 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Marra, M. et al. High-performance liquid chromatographic assay of asymmetric dimethylarginine, symmetric dimethylarginine, and arginine in human plasma by derivatization with naphthalene-2,3-dicarboxaldehyde. Anal. Biochem. 318, 13–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Blackwell, S., O'Reilly, D. S. & Talwar, D. K. HPLC analysis of asymmetric dimethylarginine (ADMA) and related arginine metabolites in human plasma using a novel non-endogenous internal standard. Clin. Chim. Acta 401, 14–19 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Blackwell, S., O'Reilly, D. S. & Talwar, D. Biological variation of asymmetric dimethylarginine and related arginine metabolites and analytical performance goals for their measurement in human plasma. Eur. J. Clin. Invest. 37, 364–371 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Schwedhelm, E. Quantification of ADMA: analytical approaches. Vasc. Med. 10 (Suppl. 1), S89–S95 (2005).

    Article  PubMed  Google Scholar 

  12. Martens-Lobenhoffer, J. & Bode-Böger, S. M. Chromatographic-mass spectrometric methods for the quantification of L-arginine and its methylated metabolites in biological fluids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 851, 30–41 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Tsikas, D. A critical review and discussion of analytical methods in the L-arginine/nitric oxide area of basic and clinical research. Anal. Biochem. 379, 139–163 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Schwedhelm, E. et al. High-throughput liquid chromatographic-tandem mass spectrometric determination of arginine and dimethylated arginine derivatives in human and mouse plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 851, 211–219 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Schulze, F. et al. Determination of asymmetric dimethylarginine (ADMA) using a novel ELISA assay. Clin. Chem. Lab. Med. 42, 1377–1383 (2004).

    CAS  Google Scholar 

  16. Schulze, F. et al. Determination of a reference value for NG,NG-dimethyl-L-arginine in 500 subjects. Eur. J. Clin. Invest. 35, 622–626 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Sydow, K. et al. Distribution of asymmetric dimethylarginine among 980 healthy, older adults of different ethnicities. Clin. Chem. 56, 111–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Rawal, N. et al. Structural specificity of substrate for S-adenosylmethionine: protein arginine N-methyltransferases. Biochim. Biophys. Acta 1248, 11–18 (1995).

    Article  PubMed  Google Scholar 

  19. Gary, J. D. & Clarke, S. RNA and protein interactions modulated by protein arginine methylation. Prog. Nucleic Acid Res. Mol. Biol. 61, 65–131 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Nicholson, T. B., Chen, T. & Richard, S. The physiological and pathophysiological role of PRMT1-mediated protein arginine methylation. Pharmacol. Res. 60, 466–474 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Ogawa, T., Kimoto, M. & Sasaoka, K. Occurrence of a new enzyme catalysing the direct conversion of NG,NG-dimethyl-L-arginine to L-citrulline in rats. Biochem. Biophys. Res. Commun. 148, 671–677 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Achan, V. et al. Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase. Arterioscler. Thromb. Vasc. Biol. 23, 1455–1459 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Leiper, J. M. et al. Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases. Biochem. J. 343, 209–214 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pope, A. J., Karuppiah, K. & Cardounel, A. J. Role of the PRMT-DDAH-ADMA axis in the regulation of endothelial nitric oxide production. Pharmacol. Res. 60, 461–465 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sanchez, S. E. et al. A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature 468, 112–116 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Hsu, J. M. et al. Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK activation. Nat. Cell. Biol. 13, 174–181 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kielstein, J. T., Salpeter, S. R., Bode-Boeger, S. M., Cooke, J. P. & Fliser, D. Symmetric dimethylarginine (SDMA) as endogenous marker of renal function—a meta-analysis. Nephrol. Dial. Transplant. 21, 2446–2451 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Kielstein, J. T. et al. Low dialysance of asymmetric dimethylarginine (ADMA)—in vivo and in vitro evidence of significant protein binding. Clin. Nephrol. 62, 295–300 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Böger, R. H. et al. LDL cholesterol upregulates synthesis of asymmetric dimethylarginine (ADMA) in human endothelial cells: involvement of S-adenosylmethionine-dependent methyltransferases. Circ. Res. 87, 99–105 (2000).

    Article  PubMed  Google Scholar 

  30. Böger, R. H., Bode-Böger, S. M., Sydow, K., Heistad, D. D. & Lentz, S. R. Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocyst(e)inemia. Arterioscler. Thromb. Vasc. Biol. 20, 1557–1564 (2000).

    Article  PubMed  Google Scholar 

  31. Böger, R. H., Lentz, S. R., Bode-Böger, S. M., Knapp, H. R. & Haynes, W. G. Elevation of asymmetrical dimethylarginine may mediate endothelial dysfunction during experimental hyperhomocyst(e)inaemia in humans. Clin. Sci. (Lond.) 100, 161–167 (2001).

    Article  Google Scholar 

  32. Sydow, K. et al. Endothelial dysfunction in patients with peripheral arterial disease and chronic hyperhomocysteinemia: potential role of ADMA. Vasc. Med. 9, 93–101 (2004).

    Article  PubMed  Google Scholar 

  33. Doshi, S. N. et al. Investigation of the relationship between S-adenosylmethionine, S-adenosylhomocysteine, asymmetric dimethylarginine and endothelial function in healthy human subjects. Metabolism 54, 351–360 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Mariotti, F. et al. Medium-term methionine supplementation increases plasma homocysteine but not ADMA and improves blood pressure control in rats fed a diet rich in protein and adequate in folate and choline. Eur. J. Nutr. 45, 383–390 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Antoniades, C. et al. Asymmetrical dimethylarginine regulates endothelial function in methionine-induced but not in chronic homocystinemia in humans: effect of oxidative stress and proinflammatory cytokines. Am. J. Clin. Nutr. 84, 781–788 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Sydow, K. et al. ADMA and oxidative stress are responsible for endothelial dysfunction in hyperhomocyst(e)inemia: effects of L-arginine and B vitamins. Cardiovasc. Res. 57, 244–252 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Spoelstra-de Man, A. M. et al. No effect of B vitamins on ADMA levels in patients at increased cardiovascular risk. Clin. Endocrinol. (Oxf.) 64, 495–501 (2006).

    Article  CAS  Google Scholar 

  38. Schmitt, B. et al. Effects of combined supplementation with B vitamins and antioxidants on plasma levels of asymmetric dimethylarginine (ADMA) in subjects with elevated risk for cardiovascular disease. Atherosclerosis 193, 168–176 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Böger, R. H. et al. ADMA: a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation 98, 1842–1847 (1998).

    Article  PubMed  Google Scholar 

  40. Böger, R. H. et al. Dietary L-arginine slows the progression of atherosclerosis in cholesterol-fed rabbits—comparison with lovastatin. Circulation 96, 1282–1290 (1997).

    Article  PubMed  Google Scholar 

  41. Cardounel, A. J. et al. Evidence for the pathophysiological role of endogenous methylarginines in regulation of endothelial NO production and vascular function. J. Biol. Chem. 282, 879–887 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Tsikas, D., Böger, R. H., Sandmann, J., Bode-Böger, S. M. & Frölich, J. C. Hypothesis: Endogenous nitric oxide synthase inhibitors are responsible for the L-arginine paradox. FEBS Lett. 478, 1–3 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Garvey, E. P. et al. Purification and characterization of the constitutive nitric oxide synthase from human placenta. Arch. Biochem. Biophys. 311, 235–241 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Closs, E. I., Simon, A., Vékony, N. & Rotmann, A. Plasma membrane transporters for arginine. J. Nutr. 134 (Suppl.), 2752S–2759S (2004).

  45. Vallance, P., Leone, A., Calver, A., Collier, J. & Moncada, S. Endogenous dimethylarginine as an inhibitor of nitric oxide synthesis. J. Cardiovasc. Pharmacol. 20 (Suppl. 12), S60–S62 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Dayoub, H. et al. Dimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis: genetic and physiological evidence. Circulation 108, 3042–3047 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Dayoub, H. et al. Overexpression of dimethylarginine dimethylaminohydrolase inhibits asymmetric dimethylarginine-induced endothelial dysfunction in the cerebral circulation. Stroke 39, 180–184 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Jacobi, J. et al. Role of asymmetric dimethylarginine for angiotensin II-induced target organ damage in mice. Am. J. Physiol. Heart Circ. Physiol. 294, H1058–H1066 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Jacobi, J. et al. Dimethylarginine dimethylaminohydrolaseoverexpression suppresses atherosclerosis in apolipoprotein E-deficient mice by lowering asymmetric dimethylarginine. Am. J. Pathol. 176, 2559–2570 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leypoldt, F. et al. Dimethylarginine dimethylaminohydrolase-1 transgenic mice are not protected from ischemic stroke. PLoS One 4, e7337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schwedhelm, E. et al. Extensive characterization of the human DDAH1 transgenic mice. Pharmacol. Res. 60, 494–502 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Hasegawa, K. et al. Role of asymmetric dimethylarginine in vascular injury in transgenic mice overexpressing dimethylarginine dimethylaminohydrolase 2. Circ. Res. 101, e2–e10 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, D. et al. Isoform-specific regulation by NG,NG-dimethylarginine dimethylaminohydrolase of rat serum asymmetric dimethylarginine and vascular endothelium-derived relaxing factor/NO. Circ. Res. 101, 627–635 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Leiper, J. et al. Disruption of methylarginine metabolism impairs vascular homeostasis. Nat. Med. 13, 198–203 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Hu, X. et al. Vascular endothelial-specific dimethylarginine dimethylaminohydrolase-1-deficient mice reveal vascular endothelium plays an important role in removing asymmetric dimethylarginine. Circulation 120, 2222–2229 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Akbar, F. et al. Haplotypic association of DDAH1 with susceptibility to pre-eclampsia. Mol. Hum. Reprod. 11, 73–77 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Maas, R. et al. Polymorphisms in the promoter region of the dimethylarginine dimethylaminohydrolase 2 gene are associated with prevalence of hypertension. Pharmacol. Res. 60, 488–493 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Caplin, B. et al. Circulating methylarginine levels and the decline in renal function in patients with chronic kidney disease are modulated by DDAH1 polymorphisms. Kidney Int. 77, 459–467 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Kielstein, J. T. et al. Marked increase of asymmetric dimethylarginine in patients with incipient primary chronic renal disease. J. Am. Soc. Nephrol. 13, 170–176 (2002).

    CAS  PubMed  Google Scholar 

  60. Uchida, H. A. et al. Steroid pulse therapy impaired endothelial function while increasing plasma high molecule adiponectin concentration in patients with IgA nephropathy. Nephrol. Dial. Transplant. 21, 3475–3480 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Nijveldt, R. J. et al. Net renal extraction of asymmetrical (ADMA) and symmetrical (SDMA) dimethylarginine in fasting humans. Nephrol. Dial. Transplant. 17, 1999–2002 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Sibal, L. et al. A study of endothelial function and circulating asymmetrical dimethylarginine levels in people with type 1 diabetes without macrovascular disease or microalbuminuria. Cardiovasc. Diabetol. 8, 27 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Anderssohn, M., Schwedhelm, E., Lüneburg, N., Vasan, R. S. & Böger, R. H. Asymmetric dimethylarginine as a mediator of vascular dysfunction and a marker of cardiovascular disease and mortality: an intriguing interaction with diabetes mellitus. Diab. Vasc. Dis. Res. 7, 105–118 (2010).

    Article  PubMed  Google Scholar 

  64. Kimoto, M., Whitley, G. S., Tsuji, H. & Ogawa, T. Detection of NG,NG-dimethylarginine dimethylaminohydrolase in human tissues using a monoclonal antibody. J. Biochem. 117, 237–238 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Tojo, A. et al. Colocalization of demethylating enzymes and NOS and functional effects of methylarginines in rat kidney. Kidney Int. 52, 1593–1601 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Tran, C. T., Fox, M. F., Vallance, P. & Leiper, J. M. Chromosomal localization, gene structure, and expression pattern of DDAH1: comparison with DDAH2 and implications for evolutionary origins. Genomics 68, 101–105 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Carello, K. A., Whitesall, S. E., Lloyd, M. C., Billecke, S. S. & D'Alecy, L. G. Asymmetrical dimethylarginine plasma clearance persists after acute total nephrectomy in rats. Am. J. Physiol. Heart Circ. Physiol. 290, H209–H216 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Tatematsu, S. et al. Role of nitric oxide-producing and -degrading pathways in coronary endothelial dysfunction in chronic kidney disease. J. Am. Soc. Nephrol. 18, 741–749 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Kalousová, M. et al. No benefit of hemodiafiltration over hemodialysis in lowering elevated levels of asymmetric dimethylarginine in ESRD patients. Blood Purif. 24, 439–444 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Grooteman, M. P., Wauters, I. M., Teerlink, T., Twisk, J. W. & Nubé, M. J. Plasma dimethylarginine levels in chronic hemodialysis patients are independent of the type of dialyzer applied. Blood Purif. 25, 281–289 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Zoccali, C. et al. Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study. Lancet 358, 2113–2117 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Valkonen, V. P. et al. Risk of acute coronary events and serum concentration of asymmetrical dimethylarginine. Lancet 358, 2127–2128 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Zoccali, C. et al. Asymmetric dimethylarginine (ADMA), C-reactive protein, and carotid intima media-thickness in end-stage renal disease. J. Am. Soc. Nephrol. 13, 490–496 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Zoccali, C. et al. Left ventricular hypertrophy, cardiac remodelling and asymmetric dimethylarginine (ADMA) in hemodialysis patients. Kidney Int. 62, 339–345 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Busch, M., Fleck, C., Wolf, G. & Stein, G. Asymmetrical (ADMA) and symmetrical dimethylarginine (SDMA) as potential risk factors for cardiovascular and renal outcome in chronic kidney disease—possible candidates for paradoxical epidemiology? Amino Acids 30, 225–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Ravani, P. et al. Asymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease: a competing risks modeling approach. J. Am. Soc. Nephrol. 16, 2449–2455 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Fliser, D. et al. Asymmetric dimethylarginine and progression of chronic kidney disease: the mild to moderate kidney disease study. J. Am. Soc. Nephrol. 16, 2456–2461 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Böger, R. H. et al. Asymmetric dimethylarginine as independent risk marker for mortality in ambulatory patients with peripheral arterial disease. J. Intern. Med. 269, 349–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Schulze, F. et al. Symmetric dimethylarginine predicts all-cause mortality following ischemic stroke. Atherosclerosis 208, 518–523 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Böger, R. H. et al. Plasma asymmetric dimethylarginine and incidence of cardiovascular disease and death in the community. Circulation 119, 1592–1600 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schwarz, P., Diem, R., Dun, N. J. & Förstermann, U. Endogenous and exogenous nitric oxide inhibits norepinephrine release from rat sympathetic nerves. Circ. Res. 77, 841–848 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Costa, F., Christensen, N. J., Farley, G. & Biaagioni, I. NO modulates norepinephrine release in human skeletal muscle: implications for neural preconditioning. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1494–R1498 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Owlya, R. et al. Cardiovascular and symathetic effects of nitric oxide inhibition at rest and during static exercise in humans. Circulation 96, 3897–3903 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Hijmering, M. L. et al. Sympathetic activation markedly reduces endothelium-dependent, flow-mediated vasodilation. J. Am. Coll. Cardiol. 39, 683–688 (2002).

    Article  PubMed  Google Scholar 

  85. Mallamaci, F. et al. Analysis of the relationship between norepinephrine and asymmetric dimethylarginine in patients with end-stage renal disease. J. Am. Soc. Nephrol. 15, 435–441 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Nijveldt, R. J. et al. Asymmetrical dimethylarginine (ADMA) in critically ill patients: high plasma ADMA concentration is an independent risk factor of ICU mortality. Clin. Nutr. 22, 23–30 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Zeller, M. et al. Impact of asymmetric dimethylarginine on mortality after acute myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 28, 954–960 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Lu, T. M., Ding, Y. A., Lin, S. J., Lee, W. S. & Tai, H. C. Plasma levels of asymmetrical dimethylarginine and adverse cardiovascular events after percutaneous coronary intervention. Eur. Heart J. 24, 1912–1919 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Schnabel, R. et al. Asymmetric dimethylarginine and the risk of cardiovascular events and death in patients with coronary artery disease: results from the AtheroGene Study. Circ. Res. 97, e53–e59 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Meinitzer, A. et al. Asymmetrical dimethylarginine independently predicts total and cardiovascular mortality in individuals with angiographic coronary artery disease (the Ludwigshafen Risk and Cardiovascular Health study). Clin. Chem. 53, 273–283 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Dückelmann, C. et al. Asymmetric dimethylarginine enhances cardiovascular risk prediction in patients with chronic heart failure. Arterioscler. Thromb. Vasc. Biol. 27, 2037–2042 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Mittermayer, F. et al. Asymmetric dimethylarginine predicts major adverse cardiovascular events in patients with advanced peripheral artery disease. Arterioscler. Thromb. Vasc. Biol. 26, 2536–2540 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Krzyzanowska, K., Mittermayer, F., Wolzt, M. & Schernthaner, G. Asymmetric dimethylarginine predicts cardiovascular events in patients with type 2 diabetes. Diabetes Care 30, 1834–1839 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Böger, R. H. et al. An endogenous inhibitor of nitric oxide synthase regulates endothelial adhesiveness for monocytes. J. Am. Coll. Cardiol. 36, 2287–2295 (2000).

    Article  PubMed  Google Scholar 

  95. Schepers, E., Glorieux, G., Dhondt, A., Leybaert, L. & Vanholder, R. Role of symmetric dimethylarginine in vascular damage by increasing ROS via store-operated calcium influx in monocytes. Nephrol. Dial. Transplant. 24, 1429–1435 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Stühlinger, M. C. et al. Asymmetric dimethyl L-arginine (ADMA) is a critical regulator of myocardial reperfusion injury. Cardiovasc. Res. 75, 417–425 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Böger, R. H. Asymmetric dimethylarginine (ADMA): a novel risk marker in cardiovascular medicine and beyond. Ann. Med. 38, 126–136 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Maas, R. et al. Asymmetric dimethylarginine, smoking, and risk of coronary heart disease in apparently healthy men: prospective analysis from the population-based Monitoring of Trends and Determinants in Cardiovascular Disease/Kooperative Gesundheitsforschung in der Region Augsburg study and experimental data. Clin. Chem. 53, 693–701 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Leong, T. et al. Asymmetric dimethylarginine independently predicts fatal and nonfatal myocardial infarction and stroke in women: 24-year follow-up of the population study of women in Gothenburg. Arterioscler. Thromb. Vasc. Biol. 28, 961–967 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Kakimoto, Y. & Akazawa, S. Isolation and identification of NG,NG-and NG,N′G-dimethyl-arginine, Nɛ-mono-, di-, and trimethyllysine, and glucosylgalactosyl- and galactosyl-δ-hydroxylysine from human urine. J. Biol. Chem. 245, 5751–5758 (1970).

    CAS  PubMed  Google Scholar 

  101. Closs, E. I., Basha, F. Z., Habermeier, A. & Förstermann, U. Interference of L-arginine analogues with L-arginine transport mediated by the y+ carrier hCAT-2B. Nitric Oxide 1, 65–73 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Bode-Böger, S. M. et al. Symmetrical dimethylarginine: a new combined parameter for renal function and extent of coronary artery disease. J. Am. Soc. Nephrol. 17, 1128–1134 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Fleck, C., Schweitzer, F., Karge, E., Busch, M. & Stein, G. Serum concentrations of asymmetric (ADMA) and symmetric (SDMA) dimethylarginine in patients with chronic kidney diseases. Clin. Chim. Acta 336, 1–12 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Yilmaz, M. I. et al. ADMA levels correlate with proteinuria, secondary amyloidosis, and endothelial dysfunction. J. Am. Soc. Nephrol. 19, 388–395 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Oner-Iyidogan, Y. et al. Dimethylarginines and inflammation markers in patients with chronic kidney disease undergoing dialysis. Clin. Exp. Med. 9, 235–241 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Caglar, K. et al. ADMA, proteinuria, and insulin resistance in non-diabetic stage I chronic kidney disease. Kidney Int. 70, 781–787 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Brooks, E. R. et al. Methylated arginine derivatives in children and adolescents with chronic kidney disease. Pediatr. Nephrol. 24, 129–134 (2009).

    Article  PubMed  Google Scholar 

  108. Aucella, F. et al. Methylarginines and mortality in patients with end-stage renal disease: a prospective cohort study. Atherosclerosis 207, 541–545 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Billecke, S. S. Blood content of asymmetric dimethylarginine: new insights into its dysregulation in renal disease. Nephrol. Dial. Transplant. 24, 489–496 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Csiky, B. et al. Response of asymmetric dimethylarginine to hemodialysis-associated hypotension in end-stage renal disease patients. Nephron Clin. Pract. 108, c127–c134 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Aslam, S., Santha, T., Leone, A. & Wilcox, C. Effects of amlodipine and valsartan on oxidative stress and plasma methylarginines in end-stage renal disease patients on hemodialysis. Kidney Int. 70, 2109–2115 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Goonasekera, C. D. et al. Nitric oxide synthase inhibitors and hypertension in children and adolescents. J. Hypertens. 15, 901–909 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Marescau, B. et al. Guanidino compounds in serum and urine of nondialyzed patients with chronic renal insufficiency. Metabolism 46, 1024–1031 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Al Banchaabouchi, M. et al. NG,NG-dimethylarginine and NG,NG-dimethylarginine in renal insufficiency. Pflugers Arch. 439, 524–531 (2000).

    CAS  PubMed  Google Scholar 

  115. Ellis, J. et al. Levels of dimethylarginines and cytokines in mild and severe preeclampsia. Acta Obstet. Gynecol. Scand. 80, 602–608 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Tarnow, L., Hovind, P., Teerlink, T., Stehouwer, C. D. & Parving, H. H. Elevated plasma asymmetric dimethylarginine as a marker of cardiovascular morbidity in early diabetic nephropathy in type 1 diabetes. Diabetes Care 27, 765–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Nanayakkara, P. W. et al. Plasma asymmetric dimethylarginine (ADMA) concentration is independently associated with carotid intima-media thickness and plasma soluble vascular cell adhesion molecule-1 (sVCAM-1) concentration in patients with mild-to-moderate renal failure. Kidney Int. 68, 2230–2236 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Wang, J. et al. Relations between plasma asymmetric dimethylarginine (ADMA) and risk factors for coronary disease. Atherosclerosis 184, 383–388 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Wanby, P. et al. Asymmetric dimethylarginine (ADMA) as a risk marker for stroke and TIA in a Swedish population. Atherosclerosis 185, 271–277 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Siroen, M. P. et al. No compensatory upregulation of placental dimethylarginine dimethylaminohydrolase activity in preeclampsia. Gynecol. Obstet. Invest. 62, 7–13 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Lluch, P. et al. Accumulation of symmetric dimethylarginine in hepatorenal syndrome. Exp. Biol. Med. 231, 70–75 (2006).

    Article  CAS  Google Scholar 

  122. Kumagai, H. et al. Association of homocysteine and asymmetric dimethylarginine with atherosclerosis and cardiovascular events in maintenance hemodialysis patients. Am. J. Kidney. Dis. 48, 797–805 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Young, J. M. et al. Asymmetric dimethylarginine and mortality in stages 3 to 4 chronic kidney disease. Clin. J. Am. Soc. Nephrol. 4, 1115–1120 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Abedini, S. et al. Asymmetrical dimethylarginine is associated with renal and cardiovascular outcomes and all-cause mortalilty in renal transplant recipients. Kidney Int. 77, 44–50 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Some of the authors' studies cited in this article were funded by the Deutsche Forschungsgemeinschat (Grants Bo 1431/3-1 and Bo 1431/4-1).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to writing, discussing content and reviewing/editing the manuscript before submission. E. Schwedhelm researched data for this article.

Corresponding author

Correspondence to Rainer H. Böger.

Ethics declarations

Competing interests

E. Schwedhelm and R. H. Böger declare that they are patent holders with the University of Hamburg, Germany. R. H. Böger declares that he is a stock holder/director with GermedIQ GmbH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwedhelm, E., Böger, R. The role of asymmetric and symmetric dimethylarginines in renal disease. Nat Rev Nephrol 7, 275–285 (2011). https://doi.org/10.1038/nrneph.2011.31

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.31

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research