Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New pharmacological treatments for improving renal outcomes in diabetes

Abstract

Diabetic nephropathy is the most common and most rapidly growing cause of end-stage renal failure in developed countries. Diabetic nephropathy results from complex interactions between genetic, metabolic and hemodynamic factors. Improvements in our understanding of the pathogenesis of fibrosis associated with diabetic kidney disease have led to the identification of several novel targets for the treatment of diabetic nephropathy. Albuminuria is a useful clinical marker of diabetic nephropathy, as it can be used to predict a decline in renal function. A reduction in albuminuria might not, however, be reflective of a protective effect of therapies focused on ameliorating renal fibrosis. Although new strategies for slowing down the progression of several types of renal disease have emerged, the challenge of arresting the relentless progression of diabetic nephropathy remains. In this Review, we discuss novel pharmacological approaches that aim to improve the renal outcomes of diabetic nephropathy, including the use of direct renin inhibitors and statins. We also discuss the promise of using antifibrotic agents to treat diabetic nephropathy. The need for novel biomarkers of diabetic nephropathy is also highlighted.

Key Points

  • Albuminuria is a widely used marker of loss of renal function, but additional markers of the progression of diabetic nephropathy are needed

  • Preliminary evidences supports a role for the direct renin inhibitor aliskiren in the treatment of diabetic nephropathy

  • Further experimental studies and clinical trials are urgently needed to determine whether statin administration slows the progression of diabetic nephropathy

  • The efficacy of novel agents that aim to control renal fibrosis, such as anti-TGF-β antibodies and pirfenidone, are being investigated in the treatment of diabetic nephropathy

  • Improved understanding of genetic susceptibility to diabetic nephropathy and the discovery of new biomarkers may in the future enable the development of individualized therapies that prevent the development of diabetic nephropathy or slow its progression

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The renin–angiotensin system and potential therapeutic strategies to inhibit the progression of diabetic nephropathy.
Figure 2: Pathways through which type 1 and type 2 diabetes can cause renal damage, and the effects of known and experimental therapeutics on these pathways.

Similar content being viewed by others

References

  1. Wild, S., Roglic, G., Green, A., Sicree, R. & King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27, 1047–1053 (2004).

    Article  PubMed  Google Scholar 

  2. Centers for Disease Control and Prevention (CDC). Prevalence of chronic kidney disease and associated risk factors: United States, 1999–2004. MMWR Morb. Mortal. Wkly Rep. 56, 161–165 (2007).

  3. Hsu, C. Y., Lin, F., Vittinghoff, E. & Shlipak, M. G. Racial differences in the progression from chronic renal insufficiency to end-stage renal disease in the United States. J. Am. Soc. Nephrol. 14, 2902–2907 (2003).

    Article  PubMed  Google Scholar 

  4. Dreyer, G., Hull, S., Aitken, Z., Chesser, A. & Yaqoob, M. M. The effect of ethnicity on the prevalence of diabetes and associated chronic kidney disease. QJM 102, 261–269 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Wolf, G. & Ziyadeh, F. N. Cellular and molecular mechanisms of proteinuria in diabetic nephropathy. Nephron Physiol. 106, 26–31 (2007).

    Article  CAS  Google Scholar 

  6. Warram, J. H., Gearin, G., Laffel, L. & Krolewski, A. S. Effect of duration of type I diabetes on the prevalence of stages of diabetic nephropathy defined by urinary albumin/creatinine ratio. J. Am. Soc. Nephrol. 7, 930–937 (1996).

    CAS  PubMed  Google Scholar 

  7. Mogensen, C. E. & Poulsen, P. L. Epidemiology of microalbuminuria in diabetes and in the background population. Curr. Opin. Nephrol. Hypertens. 3, 248–256 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Dronavalli, S., Duka, I. & Bakris, G. L. The pathogenesis of diabetic nephropathy. Nat. Clin. Pract. Endocrinol. Metab. 4, 444–452 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Anderson, S., Jung, F. F. & Ingelfinger, J. R. Renal renin–angiotensin system in diabetes: functional, immunohistochemical, and molecular biological correlations. Am. J. Physiol. 265, F477–F486 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Ingelfinger, J. R. Angiotensin-converting enzyme 2: implications for blood pressure and kidney disease. Curr. Opin. Nephrol. Hypertens. 18, 79–84 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Siragy, H. M. Angiotensin II compartmentalization within the kidney: effect of salt diet and blood pressure alterations. Curr. Opin. Nephrol. Hypertens. 15, 50–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Schelling, P., Fischer, H. & Ganten, D. Angiotensin and cell growth: a link to cardiovascular hypertrophy. J. Hypertens. 9, 3–15 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Fukai, T., Siegfried, M. R., Ushio-Fukai, M., Griendling, K. K. & Harrison, D. G. Modulation of extracellular superoxide dismutase expression by angiotensin II and hypertension. Circ. Res. 85, 23–28 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Warnholtz, A. et al. Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 99, 2027–2033 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Jaimes, E. A., Galceran, J. M. & Raij, L. Angiotensin II induces superoxide anion production by mesangial cells. Kidney Int. 54, 775–784 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Ketteler, M., Noble, N. A. & Border, W. A. Transforming growth factor-beta and angiotensin II: the missing link from glomerular hyperfiltration to glomerulosclerosis? Annu. Rev. Physiol. 57, 279–295 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Mezzano, S. A., Ruiz-Ortega, M. & Egido, J. Angiotensin II and renal fibrosis. Hypertension 38, 635–638 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Bataller, R. et al. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J. Clin. Invest. 112, 1383–1394 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Minicis, S. & Brenner, D. A. NOX in liver fibrosis. Arch. Biochem. Biophys. 462, 266–272 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Colmenero, J. et al. Effects of losartan on hepatic expression of non-phagocytic NADPH oxidase and fibrogenic genes in patients with chronic hepatitis C. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G726–G734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johar, S., Cave, A. C., Narayanapanicker, A., Grieve, D. J. & Shah, A. M. Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J. 20, 1546–1548 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Houlihan, C. A. et al. Urinary transforming-beta excretion in patients with hypertension, type 2 diabetes, and elevated albumin excretion rate: effects of angiotensin receptor blockade and sodium restriction. Diabetes Care 25, 1072–1077 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Allen, T. J., Cao, Z., Youssef, S., Hulthen, U. L. & Cooper, M. E. Role of angiotensin II and bradykinin in experimental diabetic nephropathy. Functional and structural studies. Diabetes 46, 1612–1618 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rhohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 329, 1456–1462 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Parving, H. H. et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 345, 870–878 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Mauer, M. et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N. Engl. J. Med. 361, 40–51 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ruggenenti, P., Cravedi, P. & Remuzzi, G. The renin–angiotensin–aldosterone system in the onset and progression of diabetic nephropathy. Nat. Rev. Nephrol. doi: 10.1038/nrneph.2010.58.

    Article  CAS  PubMed  Google Scholar 

  29. Huang, X. R., Chen, W. Y., Truong, L. D. & Lan, H. Y. Chymase is upregulated in diabetic nephropathy: implications for an alternative pathway of angiotensin II-mediated diabetic renal and vascular disease. J. Am. Soc. Nephrol. 14, 1738–1747 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Mann, J. F. et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet 372, 547–553 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Nguyen, G., Delarue, F., Berrou, J., Rondeau, E. & Sraer, J. D. Specific receptor binding of renin on human mesangial cells in culture increases plasminogen activator inhibitor-1 antigen. Kidney Int. 50, 1897–1903 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Nguyen, G. et al. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J. Clin. Invest. 109, 1417–1427 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang, Y. et al. Renin increases mesangial cell transforming growth factor-beta1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms. Kidney Int. 69, 105–113 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Prescott, G., Silversides, D. W. & Reudelhuber, T. L. Tissue activity of circulating prorenin. Am. J. Hypertens. 15, 280–285 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Derkx, F. H. & Schalekamp, M. A. Human prorenin: pathophysiology and clinical implications. Clin. Exp. Hypertens. A 10, 1213–1225 (1988).

    CAS  PubMed  Google Scholar 

  36. Luetscher, J. A., Kraemer, F. B., Wilson, D. M., Schwartz, H. C. & Bryer-Ash, M. Increased plasma inactive renin in diabetes mellitus. A marker of microvascular complications. N. Engl. J. Med. 312, 1412–1417 (1985).

    Article  CAS  PubMed  Google Scholar 

  37. Mercure, C., Prescott, G., Lacombe, M. J., Silversides, D. W. & Reudelhuber, T. L. Chronic increases in circulating prorenin are not associated with renal or cardiac pathologies. Hypertension 53, 1062–1069 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Siragy, H. M. & Huang, J. Renal (pro)renin receptor upregulation in diabetic rats through enhanced angiotensin AT1 receptor and NADPH oxidase activity. Exp. Physiol. 93, 709–714 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ichihara, A. et al. Prorenin receptor blockade inhibits development of glomerulosclerosis in diabetic angiotensin II type 1a receptor-deficient mice. J. Am. Soc. Nephrol. 17, 1950–1961 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Kaneshiro, Y. et al. Slowly progressive, angiotensin II-independent glomerulosclerosis in human (pro)renin receptor-transgenic rats. J. Am. Soc. Nephrol. 18, 1789–1795 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Takahashi, H. et al. Regression of nephropathy developed in diabetes by (Pro)renin receptor blockade. J. Am. Soc. Nephrol. 18, 2054–2061 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Boger, J. et al. Renin inhibitors. Syntheses of subnanomolar, competitive, transition-state analogue inhibitors containing a novel analogue of statine. J. Med. Chem. 28, 1779–1790 (1985).

    Article  CAS  PubMed  Google Scholar 

  43. Hui, K. Y., Carlson, W. D., Bernatowicz, M. S. & Haber, E. J. Analysis of structure-activity relationships in renin substrate analogue inhibitory peptides. J. Med. Chem. 30, 1287–1295 (1987).

    Article  CAS  PubMed  Google Scholar 

  44. Staessen, J. A., Li, Y. & Richart, T. Oral renin inhibitors. Lancet 368, 1449–1456 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Rahuel, J. et al. Structure-based drug design: the discovery of novel nonpeptide orally active inhibitors of human renin. Chem. Biol. 7, 493–504 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Wood, J. M. et al. Structure-based design of aliskiren, a novel orally effective renin inhibitor. Biochem. Biophys. Res. Commun. 308, 698–705 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Nussberger, J., Wuerzner, G., Jensen, C. & Brunner, H. R. Angiotensin II suppression in humans by the orally active renin inhibitor Aliskiren (SPP100): comparison with enalapril. Hypertension 39, E1–E8 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Wood, J. M., Schnell, C. R., Cumin, F., Menard, J. & Webb, R. L. Aliskiren, a novel, orally effective renin inhibitor, lowers blood pressure in marmosets and spontaneously hypertensive rats. J. Hypertens. 23, 417–426 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Ganten, D. et al. Species specificity of renin kinetics in transgenic rats harboring the human renin and angiotensinogen genes. Proc. Natl Acad. Sci. USA 89, 7806–7810 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pilz, B. et al. Aliskiren, a human renin inhibitor, ameliorates cardiac and renal damage in double-transgenic rats. Hypertension 46, 569–576 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Kelly, D. J., Zhang, Y., Moe, G., Naik, G. & Gilbert, R. E. Aliskiren, a novel renin inhibitor, is renoprotective in a model of advanced diabetic nephropathy in rats. Diabetologia 50, 2398–2404 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Feldman, D. L. et al. Effect of aliskiren on blood pressure, albuminuria and (pro)renin receptor expression in diabetic TG(mRen-2)27 rats. Hypertension 52, 130–136 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Pool, J. L. Direct renin inhibitor: focus on aliskiren. J. Manag. Care Pharm. 13 (Suppl. B), S21–S33 (2007).

    Google Scholar 

  54. Triller, D. M., Evang, S. D., Tadrous, M. & Yoo, B. K. First renin inhibitor, aliskiren, for the treatment of hypertension. Pharm. World Sci. 30, 741–749 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Persson, F. et al. Time course of the antiproteinuric and antihypertensive effects of direct renin inhibition in type 2 diabetes. Kidney Int. 73, 1419–1425 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Persson, F. et al. Renal effects of aliskiren compared with and in combination with irbesartan in patients with type 2 diabetes, hypertension, and albuminuria. Diabetes Care 32, 1873–1879 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Parving, H. H., Persson, F., Lewis, J. B., Lewis, E. J. & Hollenberg, N. K. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N. Engl. J. Med. 358, 2433–2446 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Parving, H. H. et al. Aliskiren Trial in Type 2 Diabetes Using Cardio-Renal Endpoints (ALTITUDE): rationale and study design. Nephrol. Dial. Transplant. 24, 1663–1671 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Solomon, S. D. et al. Effect of the direct renin inhibitor aliskiren, the angiotensin receptor blocker losartan, or both on left ventricular mass in patients with hypertension and left ventricular hypertrophy. Circulation 119, 530–537 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. ClinicalTrials.gov. Phase IIa Study to Investigate the Efficacy and Safety of SPP635 in Diabetic and Hypertensive Patients with Albuminuria [online], (2008).

  61. Gröne, H. J. et al. Induction of glomerulosclerosis by dietary lipids. A functional and morphologic study in the rat. Lab. Invest. 60, 433–446 (1989).

    PubMed  Google Scholar 

  62. Rayner, H. C., Ross-Gilbertson, V. L. & Walls, J. The role of lipids in the pathogenesis of glomerulosclerosis in the rat following subtotal nephrectomy. Eur. J. Clin. Invest. 20, 97–104 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Rovin, B. H. & Tan, L. C. LDL stimulates mesangial fibronectin production and chemoattractant expression. Kidney Int. 43, 218–225 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Pai, R., Kirschenbaum, M. A. & Kamanna, V. S. Low-density lipoprotein stimulates the expression of macrophage colony-stimulating factor in glomerular mesangial cells. Kidney Int. 48, 1254–1262 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Kamanna, V. S., Pai, R., Roh, D. D. & Kirschenbaum, M. A. Oxidative modification of low-density lipoprotein enhances the murine mesangial cell cytokines associated with monocyte migration, differentiation, and proliferation. Lab. Invest. 74, 1067–1079 (1996).

    CAS  PubMed  Google Scholar 

  66. Roh, D. D., Kamanna, V. S. & Kirschenbaum, M. A. Oxidative modification of low-density lipoprotein enhances mesangial cell protein synthesis and gene expression of extracellular matrix proteins. Am. J. Nephrol. 18, 344–350 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Coimbra, T. M. et al. Early events leading to renal injury in obese Zucker (fatty) rats with type II diabetes. Kidney Int. 57, 167–182 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Eddy, A. A. Interstitial fibrosis in hypercholesterolemic rats: role of oxidation, matrix synthesis, and proteolytic cascades. Kidney Int. 53, 1182–1189 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Ravid, M., Brosh, D., Ravid-Safran, D., Levy, Z. & Rachmani, R. Main risk factors for nephropathy in type 2 diabetes mellitus are plasma cholesterol levels, mean blood pressure, and hyperglycemia. Arch. Intern. Med. 158, 998–1004 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Ota, T. et al. Preventive effect of cerivastatin on diabetic nephropathy through suppression of glomerular macrophage recruitment in a rat model. Diabetologia 46, 843–851 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Jandeleit-Dahm, K. et al. Role of hyperlipidemia in progressive renal disease: focus on diabetic nephropathy. Kidney Int. Suppl. 71, S31–S36 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Reisin, E. et al. Effect of the HMG-CoA reductase inhibitor rosuvastatin on early chronic kidney injury in obese zucker rats fed with an atherogenic diet. Am. J. Med. Sci. 338, 301–309 (2009).

    Article  PubMed  Google Scholar 

  73. Liao, J. K. Isoprenoids as mediators of the biological effects of statins. J. Clin. Invest. 110, 285–288 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Epstein, M. & Campese, V. M. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors on renal function. Am. J. Kidney Dis. 45, 2–14 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Usui, H. et al. HMG-CoA reductase inhibitor ameliorates diabetic nephropathy by its pleiotropic effects in rats. Nephrol. Dial. Transplant. 18, 265–272 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Park, J. K. et al. Cerivastatin prevents angiotensin II-induced renal injury independent of blood pressure- and cholesterol-lowering effects. Kidney Int. 58, 1420–1430 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Matsumoto, M. et al. Effect of pitavastatin on type 2 diabetes mellitus nephropathy in KK-Ay/Ta mice. Metabolism 57, 691–697 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Fujii, M. et al. Pitavastatin ameliorates albuminuria and renal mesangial expansion by downregulating NOX4 in db/db mice. Kidney Int. 72, 473–480 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Danesh, F. R. et al. 3-Hydroxy-3-methylglutaryl CoA reductase inhibitors prevent high glucose-induced proliferation of mesangial cells via modulation of Rho GTPase/p21 signaling pathway: implications for diabetic nephropathy. Proc. Natl Acad. Sci. USA 99, 8301–8305 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vrtovsnik, F., Couette, S., Prié, D., Lallemand, D. & Friedlander, G. Lovastatin-induced inhibition of renal epithelial tubular cell proliferation involves a p21ras activated, AP-1-dependent pathway. Kidney Int. 52, 1016–1027 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Baigent, C. et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 1267–1278 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Colhoun, H. M. et al. Effects of atorvastatin on kidney outcomes and cardiovascular disease in patients with diabetes: an analysis from the Collaborative Atorvastatin Diabetes Study (CARDS). Am. J. Kidney Dis. 54, 810–819 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Wanner, C. et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 353, 238–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Fellström, B. C. et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 360, 1395–1407 (2009).

    Article  PubMed  CAS  Google Scholar 

  85. Tonelli, M., Moyé, L., Sacks, F. M., Kiberd, B. & Curhan, G. Cholesterol and Recurrent Events (CARE) Trial Investigators. Pravastatin for secondary prevention of cardiovascular events in persons with mild chronic renal insufficiency. Ann. Intern. Med. 138, 98–104 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Sandhu, S., Wiebe, N., Fried, L. F. & Tonelli, M. Statins for improving renal outcomes: a meta-analysis. J. Am. Soc. Nephrol. 17, 2006–2016 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. ClinicalTrials.gov. Prospective Evaluation of Proteinuria and Renal Function in Non-diabetic Patients With Progressive Renal Disease (PLANET II) [online], (2009).

  88. Fassett, R. G., Ball, M. J., Robertson, I. K., Geraghty, D. P. & Coombes, J. S. The Lipid lowering and Onset of Renal Disease (LORD) Trial: a randomized double blind placebo controlled trial assessing the effect of atorvastatin on the progression of kidney disease. BMC Nephrol. 9, 4 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Baigent, C. & Landry, M. Study of Heart and Renal Protection (SHARP). Kidney Int. Suppl. 84, S207–S210 (2003).

    Article  Google Scholar 

  90. Iwano, M. & Neilson, E. G. Mechanisms of tubulointerstitial fibrosis. Curr. Opin. Nephrol. Hypertens. 13, 279–284 (2004).

    Article  PubMed  Google Scholar 

  91. Eddy, A. A. Molecular basis of renal fibrosis. Pediatr. Nephrol. 15, 290–301 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Christensen, E. I. & Verroust, P. J. Interstitial fibrosis: tubular hypothesis versus glomerular hypothesis. Kidney Int. 74, 1233–1236 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Sharma, K. & Ziyadeh, F. N. Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator. Diabetes 44, 1139–1146 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Hoffman, B. B., Sharma, K. & Ziyadeh, F. N. Potential role of TGF-beta in diabetic nephropathy. Miner. Electrolyte Metab. 24, 190–196 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Tsuchida, K., Cronin, B. & Sharma, K. Novel aspects of transforming growth factor-beta in diabetic kidney disease. Nephron 92, 7–21 (2002).

    Article  PubMed  Google Scholar 

  96. Sharma, K. & McGowan, T. A. TGF-beta in diabetic kidney disease: role of novel signaling pathways. Cytokine Growth Factor Rev. 11, 115–123 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Yamaguchi, Y. et al. Epithelial–mesenchymal transition as a potential explanation for podocyte depletion in diabetic nephropathy. Am. J. Kidney Dis. 54, 653–664 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Li, M. X. & Liu, B. C. Epithelial to mesenchymal transition in the progression of tubulointerstitial fibrosis. Chin. Med. J. (Engl.) 120, 1925–1930 (2007).

    Article  CAS  Google Scholar 

  99. Hills, C. E. & Squires, P. E. TGF-beta1-induced epithelial-to-mesenchymal transition and therapeutic intervention in diabetic nephropathy. Am. J. Nephrol. 31, 68–74 (2009).

    Article  PubMed  CAS  Google Scholar 

  100. Sharma, K., Jin, Y., Guo, J. & Ziyadeh, F. N. Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes 45, 522–530 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Sharma, K. et al. Involvement of transforming growth factor-beta in regulation of calcium transients in diabetic vascular smooth muscle cells. Am. J. Physiol. Renal Physiol. 285, 1258–1270 (2003).

    Article  Google Scholar 

  102. Sharma, K., Cook, A., Smith, M., Valancius, C. & Inscho, E. W. TGF-beta impairs renal autoregulation via generation of ROS. Am. J. Physiol. Renal Physiol. 288, 1069–1077 (2005).

    Article  CAS  Google Scholar 

  103. Ziyadeh, F. N. et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc. Natl Acad. Sci. USA 97, 8015–8020 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen, S. et al. Reversibility of established diabetic glomerulopathy by anti-TGF-beta antibodies in db/db mice. Biochem. Biophys. Res. Commun. 300, 16–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Juárez, P. et al. Soluble betaglycan reduces renal damage progression in db/db mice. Am. J. Physiol. Renal Physiol. 292, F321–F329 (2007).

    Article  PubMed  CAS  Google Scholar 

  106. Kushibiki, T., Nagata-Nakajima, N., Sugai, M., Shimizu, A. & Tabata, Y. Delivery of plasmid DNA expressing small interference RNA for TGF-beta type II receptor by cationized gelatin to prevent interstitial renal fibrosis. J. Control. Release 105, 318–331 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Agarwal, R., Siva, S., Dunn, S. R. & Sharma, K. Add-on angiotensin II receptor blockade lowers urinary transforming growth factor-beta levels. Am. J. Kidney Dis. 39, 486–492 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Sharma, K. et al. Captopril-induced reduction of serum levels of transforming growth factor-beta1 correlates with long-term renoprotection in insulin-dependent diabetic patients. Am. J. Kidney Dis. 34, 818–823 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Benigni, A. et al. Add-on anti-TGF-beta antibody to ACE inhibitor arrests progressive diabetic nephropathy in the rat. J. Am. Soc. Nephrol. 14, 1816–1824 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Peters, H. et al. Angiotensin-converting enzyme inhibition but not beta-adrenergic blockade limits transforming growth factor-beta overexpression in acute normotensive anti-thy1 glomerulonephritis. J. Hypertens. 21, 771–780 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Kim, S. I., Han, D. C. & Lee, H. B. Lovastatin inhibits transforming growth factor-beta1 expression in diabetic rat glomeruli and cultured rat mesangial cells. J. Am. Soc. Nephrol. 11, 80–87 (2000).

    CAS  PubMed  Google Scholar 

  112. Vieira, J. M. Jr et al. Simvastatin attenuates renal inflammation, tubular transdifferentiation and interstitial fibrosis in rats with unilateral ureteral obstruction. Nephrol. Dial. Transplant. 20, 1582–1591 (2005).

    Article  PubMed  CAS  Google Scholar 

  113. Chade, A. R. et al. Simvastatin abates development of renal fibrosis in experimental renovascular disease. J. Hypertens. 26, 1651–1660 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Denton, C. P. et al. Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum. 56, 323–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. ClinicalTrials.gov. Study of GC1008 in Patients with Idiopathic Pulmonary Fibrosis (IPF) [online], (2009).

  116. ClincialTrials.gov. Safety Study of GC1008 in Patients with Focal Segmental Glomerulosclerosis (FSGS) of Single Doses of GC1008 in Patients with Treatment Resistant Idiopathic FSGS [online], (2010).

  117. Wang, Z. X. et al. The treatment of liver fibrosis induced by hepatocyte growth factor-directed, ultrasound-targeted microbubble destruction in rats. Clin. Imaging 33, 454–461 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Yang, J., Dai, C. & Liu, Y. Systemic administration of naked plasmid encoding hepatocyte growth factor ameliorates chronic renal fibrosis in mice. Gene Ther. 8, 1470–1479 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Mizuno, S., Matsumoto, K. & Nakamura, T. Hepatocyte growth factor suppresses interstitial fibrosis in a mouse model of obstructive nephropathy. Kidney Int. 59, 1304–1314 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Matsumoto, K. & Nakamura, T. Hepatocyte growth factor: Renotropic role and potential therapeutics for renal diseases. Kidney Int. 59, 2023–2038 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Mizuno, S. et al. Hepatocyte growth factor prevents renal fibrosis and dysfunction in a mouse model of chronic renal disease. J. Clin. Invest. 101, 1827–1834 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yang, J., Dai, C. & Liu, Y. Hepatocyte growth factor gene therapy and angiotensin II blockade synergistically attenuate renal interstitial fibrosis in mice. J. Am. Soc. Nephrol. 13, 2464–2477 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Sánchez-Lopéz, E. et al. Connective tissue growth factor (CTGF): a key factor in the onset and progression of kidney damage [Spanish]. Nefrologia 29, 382–391 (2009).

    PubMed  Google Scholar 

  124. Nguyen, T. Q. et al. Plasma connective tissue growth factor is an independent predictor of end-stage renal disease and mortality in type 1 diabetic nephropathy. Diabetes Care 31, 1177–1182 (2008).

    Article  PubMed  Google Scholar 

  125. Guha, M., Xu, Z. G., Tung, D., Lanting, L. & Natarajan, R. Specific down-regulation of connective tissue growth factor attenuates progression of nephropathy in mouse models of type 1 and type 2 diabetes. FASEB J. 21, 3355–3368 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Luo, G. H. et al. Inhibition of connective tissue growth factor by small interfering RNA prevents renal fibrosis in rats undergoing chronic allograft nephropathy. Transplant. Proc. 40, 2365–2369 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Adler, S. G. et al. Dose-escalation phase I study of FG-3019 anti-connective tissue growth factor (CTGF) monoclonal antibody, in subjects with type I/II diabetes mellitus (DM) and microalbuminuria (MalbU) [abstract]. J. Am. Soc. Nephrol 17, 157A (2007).

    Google Scholar 

  128. Miric, G. et al. Reversal of cardiac and renal fibrosis by pirfenidone and spironolactone in streptozotocin-diabetic rats. Br. J. Pharmacol. 133, 687–694 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shimizu, T. et al. Pirfenidone prevents collagen accumulation in the remnant kidney in rats with partial nephrectomy. Kidney Int. Suppl. 63, S239–S243 (1997).

    CAS  PubMed  Google Scholar 

  130. Shimizu, T. et al. Pirfenidone improves renal function and fibrosis in the post-obstructed kidney. Kidney Int. 54, 99–109 (1998).

    Article  CAS  PubMed  Google Scholar 

  131. Misra, H. P. & Rabideau, C. Pirfenidone inhibits NADPH-dependent microsomal lipid peroxidation and scavenges hydroxyl radicals. Mol. Cell. Biochem. 204, 119–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Cho, M. E., Smith, D. C., Branton, M. H., Penzak, S. R. & Kopp, J. B. Pirfenidone slows renal function decline in patients with focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2, 906–913 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Azuma, A. et al. Double-blind, placebo-controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 171, 1040–1047 (2005).

    Article  PubMed  Google Scholar 

  134. RamachandraRao, S. P. et al. Pirfenidone is renoprotective in diabetic kidney disease. J. Am. Soc. Nephrol. 20, 1765–1775 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Peng, Z. Z. et al. Fluorofenidone attenuates collagen I and transforming growth factor-beta1 expression through a nicotinamide adenine dinucleotide phosphate oxidase-dependent way in NRK-52E cells. Nephrology (Carlton) 14, 565–572 (2009).

    Article  CAS  Google Scholar 

  136. ClincialTrials.gov. Pirfenidone: a New Drug to Treat Kidney Disease in Patients with Diabetes [online], (2009).

  137. Hirano, T., Kashiwazaki, K., Moritomo, Y., Nagano, S. & Adachi, M. Albuminuria is directly associated with increased plasma PAI-1 and factor VII levels in NIDDM patients. Diabetes Res. Clin. Pract. 36, 11–18 (1997).

    Article  CAS  PubMed  Google Scholar 

  138. Nicholas, S. B. et al. Plasminogen activator inhibitor-1 deficiency retards diabetic nephropathy. Kidney Int. 67, 1297–1307 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Huang, Y. et al. A PAI-1 mutant, PAI-1R, slows progression of diabetic nephropathy. J. Am. Soc. Nephrol. 19, 329–338 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Ma, L. J. & Fogo, A. B. PAI-1 and kidney fibrosis. Front. Biosci. 14, 2028–2041 (2009).

    Article  CAS  Google Scholar 

  141. Seo, J. Y. et al. Positive feedback loop between plasminogen activator inhibitor-1 and transforming growth factor-beta1 during renal fibrosis in diabetes. Am. J. Nephrol. 30, 481–490 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Zheng, J. M., Zhu, J. M., Li, L. S. & Liu, Z. H. Rhein reverses the diabetic phenotype of mesangial cells over-expressing the glucose transporter (GLUT1) by inhibiting the hexosamine pathway. Br. J. Pharmacol. 153, 1456–1464 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gao, Q. et al. Rhein improves renal lesion and ameliorates dyslipidemia in db/db mice with diabetic nephropathy. Planta Med. 76, 27–33 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Scivittaro, V., Ganz, M. B. & Weiss, M. F. AGEs induce oxidative stress and activate protein kinase C-beta(II) in neonatal mesangial cells. Am. J. Physiol. Renal Physiol. 278, F676–F683 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Kang, N. et al. Differential expression of protein kinase C isoforms in streptozotocin-induced diabetic rats. Kidney Int. 56, 1737–1750 (1999).

    Article  CAS  PubMed  Google Scholar 

  146. Koya, D. & King, G. L. Protein kinase C activation and the development of diabetic complications. Diabetes 47, 859–866 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Kelly, D. J. et al. Protein kinase C beta inhibition attenuates the progression of experimental diabetic nephropathy in the presence of continued hypertension. Diabetes 52, 512–518 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Tuttle, K. R. et al. The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care 28, 2686–2690 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Gilbert, R. E. et al. Effect of ruboxistaurin on urinary transforming growth factor-beta in patients with diabetic nephropathy and type 2 diabetes. Diabetes Care 30, 995–996 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Seaquist, E. R., Goetz, F. C., Rich, S. S. & Barboso, J. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N. Engl. J. Med. 320, 1161–1165 (1989).

    Article  CAS  PubMed  Google Scholar 

  151. Conway, B. R. & Maxwell, A. P. Genetics of diabetic nephropathy: are there clues to the understanding of common kidney diseases? Nephron Clin. Pract. 112, c213–c221 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Susztak, K. et al. Genomic strategies for diabetic nephropathy. J. Am. Soc. Nephrol. 14 (Suppl. 3), S271–S278 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Smith, M. P., Banks, R. E., Wood, S. L., Lewington, A. J. & Selby, P. J. Application of proteomic analysis to the study of renal diseases. Nat. Rev. Nephrol. 5, 701–712 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Sharma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Declèves, AE., Sharma, K. New pharmacological treatments for improving renal outcomes in diabetes. Nat Rev Nephrol 6, 371–380 (2010). https://doi.org/10.1038/nrneph.2010.57

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.57

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing