Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiac imaging in patients with chronic kidney disease

Key Points

  • A number of available cardiac imaging tools provide information about cardiac structure and function in patients with renal disease

  • 2D echocardiography is simple and non-invasive, and is a useful first-line cardiac investigative tool

  • 2D echocardiography can identify structural changes associated with poor prognosis but can be prone to inaccuracy as some measurements are derived rather than actual dimensions

  • 3D echocardiography is comparable to the 'gold standard' investigative tool of cardiac MRI for estimating left ventricular mass and volumes

  • Cardiac PET and single-photon emission CT provide information on myocardial perfusion in renal patients

  • Different cardiac imaging modalities may be used in combination to provide a thorough assessment of the cardiac status of renal patients

Abstract

Patients with chronic kidney disease (CKD) carry a high cardiovascular risk. In this patient group, cardiac structure and function are frequently abnormal and 74% of patients with CKD stage 5 have left ventricular hypertrophy (LVH) at the initiation of renal replacement therapy. Cardiac changes, such as LVH and impaired left ventricular systolic function, have been associated with an unfavourable prognosis. Despite the prevalence of underlying cardiac abnormalities, symptoms may not manifest in many patients. Fortunately, a range of available and emerging cardiac imaging tools may assist with diagnosing and stratifying the risk and severity of heart disease in patients with CKD. Moreover, many of these techniques provide a better understanding of the pathophysiology of cardiac abnormalities in patients with renal disease. Knowledge of the currently available cardiac imaging modalities might help nephrologists to choose the most appropriate investigative tool based on individual patient circumstances. This Review describes established and emerging cardiac imaging modalities in this context, and compares their use in CKD patients with their use in the general population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cross-sectional representation of the heart with different left ventricular geometries.
Figure 2: 2D transthoracic echocardiography image showing a cross section through the IVC over time and collapse of the IVC during a 'sniff test' in an individual with normal atrial filling pressure and no hypervolaemia.
Figure 3: Estimation of left ventricular geometry using 2D transthoracic echocardiography and the biplane Simpson method.
Figure 4: Measurement of the left ventricular volume by 3D echocardiography.
Figure 5: Cardiac magnetic resonance images that show clear delineation of the endocardial border and allow accurate measurement of left ventricular mass, geometry and volume.
Figure 6: Measurement of strain in the left ventricle using tissue Doppler imaging and speckle tracking.
Figure 7: Proposed algorithm for cardiac imaging in patients with chronic kidney disease.

Similar content being viewed by others

References

  1. US Renal Data System. USRDS 2012 Annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States. National Institute of Diabetes and Digestive and Kidney Diseases [online], (2012).

  2. Foley, R. N. et al. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int. 47, 186–192 (1995).

    CAS  PubMed  Google Scholar 

  3. Silberberg, J. S., Barre, P. E., Prichard, S. S. & Sniderman, A. D. Impact of left ventricular hypertrophy on survival in end-stage renal disease. Kidney Int. 36, 286–290 (1989).

    CAS  PubMed  Google Scholar 

  4. Foley, R. N. et al. Serial change in echocardiographic parameters and cardiac failure in end-stage renal disease. J. Am. Soc. Nephrol. 11, 912–916 (2000).

    CAS  PubMed  Google Scholar 

  5. Lang, R. M. et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr. 18, 1440–1463 (2005).

    PubMed  Google Scholar 

  6. Park, M. et al. Associations between kidney function and subclinical cardiac abnormalities in CKD. J. Am. Soc. Nephrol. 23, 1725–1734 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Foley, R. N. et al. The prognostic importance of left ventricular geometry in uremic cardiomyopathy. J. Am. Soc. Nephrol. 5, 2024–2031 (1995).

    CAS  PubMed  Google Scholar 

  8. Paoletti, E. et al. The worsening of left ventricular hypertrophy is the strongest predictor of sudden cardiac death in haemodialysis patients: a 10 year survey. Nephrol. Dial. Transplant. 19, 1829–1834 (2004).

    PubMed  Google Scholar 

  9. McMahon, L. P., Roger, S. D., Levin, A. & Slimheart Investigators Group. Development, prevention, and potential reversal of left ventricular hypertrophy in chronic kidney disease. J. Am. Soc. Nephrol. 15, 1640–1647 (2004).

    PubMed  Google Scholar 

  10. De Lima, J. J. et al. Long-term impact of renal transplantation on carotid artery properties and on ventricular hypertrophy in end-stage renal failure patients. Nephrol. Dial. Transplant. 17, 645–651 (2002).

    PubMed  Google Scholar 

  11. London, G. M. et al. Alterations of left ventricular hypertrophy in and survival of patients receiving hemodialysis: follow-up of an interventional study. J. Am. Soc. Nephrol. 12, 2759–2767 (2001).

    CAS  PubMed  Google Scholar 

  12. Gerdts, E. Left ventricular structure in different types of chronic pressure overload. Eur. Heart J. Suppl. 10, E23–E30 (2008).

    Google Scholar 

  13. Eckardt, K. U. et al. Left ventricular geometry predicts cardiovascular outcomes associated with anemia correction in CKD. J. Am. Soc. Nephrol. 20, 2651–2660 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Philippakis, A. A. & Falk, R. H. Cardiac amyloidosis mimicking hypertrophic cardiomyopathy with obstruction: treatment with disopyramide. Circulation 125, 1821–1824 (2012).

    PubMed  Google Scholar 

  15. Wang, A. Y. et al. Association of inflammation and malnutrition with cardiac valve calcification in continuous ambulatory peritoneal dialysis patients. J. Am. Soc. Nephrol. 12, 1927–1936 (2001).

    CAS  PubMed  Google Scholar 

  16. Ribeiro, S. et al. Cardiac valve calcification in haemodialysis patients: role of calcium-phosphate metabolism. Nephrol. Dial. Transplant. 13, 2037–2040 (1998).

    CAS  PubMed  Google Scholar 

  17. Wang, A. Y. et al. Cardiac valve calcification as an important predictor for all-cause mortality and cardiovascular mortality in long-term peritoneal dialysis patients: a prospective study. J. Am. Soc. Nephrol. 14, 159–168 (2003).

    PubMed  Google Scholar 

  18. Kidney Disease: Improving Global Outcomes (KDIGO) CKD–MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD–MBD). Kidney Int. 76, S1–S130 (2009).

  19. Brennan, J. M. et al. Handcarried ultrasound measurement of the inferior vena cava for assessment of intravascular volume status in the outpatient hemodialysis clinic. Clin. J. Am. Soc. Nephrol. 1, 749–753 (2006).

    PubMed  Google Scholar 

  20. Yamada, S. et al. Prognostic value of reduced left ventricular ejection fraction at start of hemodialysis therapy on cardiovascular and all-cause mortality in end-stage renal disease patients. Clin. J. Am. Soc. Nephrol. 5, 1793–1798 (2010).

    PubMed  PubMed Central  Google Scholar 

  21. Zoccali, C. et al. Prognostic value of echocardiographic indicators of left ventricular systolic function in asymptomatic dialysis patients. J. Am. Soc. Nephrol. 15, 1029–1037 (2004).

    PubMed  Google Scholar 

  22. de Bie, M. K. et al. Prevention of sudden cardiac death: rationale and design of the Implantable Cardioverter Defibrillators in Dialysis patients (ICD2) Trial—a prospective pilot study. Curr. Med. Res. Opin. 24, 2151–2157 (2008).

    PubMed  Google Scholar 

  23. Zotz, R. J., Genth, S., Waaler, A., Erbel, R. & Meyer, J. Left ventricular volume determination using Albunex. J. Am. Soc. Echocardiogr. 9, 1–8 (1996).

    CAS  PubMed  Google Scholar 

  24. de Bie, M. K. et al. Left ventricular diastolic dysfunction in dialysis patients assessed by novel speckle tracking strain rate analysis: prevalence and determinants. Int. J. Nephrol. 2012, 963504 (2012).

    PubMed  PubMed Central  Google Scholar 

  25. Farshid, A., Pathak, R., Shadbolt, B., Arnolda, L. & Talaulikar, G. Diastolic function is a strong predictor of mortality in patients with chronic kidney disease. BMC Nephrol. 14, 280 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. Tripepi, G. et al. Left atrial volume in end-stage renal disease: a prospective cohort study. J. Hypertens. 24, 1173–1180 (2006).

    CAS  PubMed  Google Scholar 

  27. Tripepi, G. et al. Left atrial volume monitoring and cardiovascular risk in patients with end-stage renal disease: a prospective cohort study. J. Am. Soc. Nephrol. 18, 1316–1322 (2007).

    PubMed  Google Scholar 

  28. Assa, S. et al. Hemodialysis-induced regional left ventricular systolic dysfunction: prevalence, patient and dialysis treatment-related factors, and prognostic significance. Clin. J. Am. Soc. Nephrol. 7, 1615–1623 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Burton, J. O., Jefferies, H. J., Selby, N. M. & McIntyre, C. W. Hemodialysis-induced cardiac injury: determinants and associated outcomes. Clin. J. Am. Soc. Nephrol. 4, 914–920 (2009).

    PubMed  PubMed Central  Google Scholar 

  30. Task Force for Preoperative Cardiac Risk Assessment and Perioperative Cardiac Management in Non-cardiac Surgery; European Society of Cardiology (ESC) et al. Guidelines for pre-operative cardiac risk assessment and perioperative cardiac management in non-cardiac surgery. Eur. Heart J. 30, 2769–2812 (2009).

  31. Wizemann, V. & Timio, M. Dialysis schedule-related fluid state and cardiovascular effects. Nephrol. Dial. Transplant. 13 (Suppl. 6), 91–93 (1998).

    PubMed  Google Scholar 

  32. Rutsky, E. A. Treatment of uremic pericarditis and pericardial effusion. Am. J. Kidney Dis. 10, 2–8 (1987).

    CAS  PubMed  Google Scholar 

  33. Jenkins, C., Bricknell, K., Hanekom, L. & Marwick, T. H. Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. J. Am. Coll. Cardiol. 44, 878–886 (2004).

    PubMed  Google Scholar 

  34. Mor-Avi, V. et al. Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: comparison with magnetic resonance imaging. Circulation 110, 1814–1818 (2004).

    PubMed  Google Scholar 

  35. Krenning, B. J. et al. Three-dimensional echocardiographic analysis of left ventricular function during hemodialysis. Nephron Clin. Pract. 107, c43–c49 (2007).

    PubMed  Google Scholar 

  36. Chiu, D. Y., Green, D., Abidin, N., Sinha, S. & Kalra, P. A. Echocardiography in hemodialysis patients: uses and challenges. Am. J. Kidney Dis. 64, 804–816 (2014).

    PubMed  Google Scholar 

  37. Nigri, M. et al. Contrast-enhanced magnetic resonance imaging identifies focal regions of intramyocardial fibrosis in patients with severe aortic valve disease: correlation with quantitative histopathology. Am. Heart J. 157, 361–368 (2009).

    PubMed  Google Scholar 

  38. Syed, I. S. et al. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc. Imaging 3, 155–164 (2010).

    PubMed  Google Scholar 

  39. Kim, R. J. et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med. 343, 1445–1453 (2000).

    CAS  PubMed  Google Scholar 

  40. Pazos, P. et al. Diagnostic value of cardiac magnetic resonance for the differential diagnosis of thrombus vs tumor [poster presentation]. J. Cardiovasc. Magn. Reson. 15 (Suppl. 1), P103 (2013).

    PubMed Central  Google Scholar 

  41. Bogaert, J. & Francone, M. Cardiovascular magnetic resonance in pericardial diseases. J. Cardiovasc. Magn. Reson. 11, 14 (2009).

    PubMed  PubMed Central  Google Scholar 

  42. Rumberger, J. A., Sheedy, P. F., Breen, J. F. & Schwartz, R. S. Electron beam computed tomographic coronary calcium score cutpoints and severity of associated angiographic lumen stenosis. J. Am. Coll. Cardiol. 29, 1542–1548 (1997).

    CAS  PubMed  Google Scholar 

  43. Bellasi, A. & Raggi, P. Techniques and technologies to assess vascular calcification. Semin. Dial. 20, 129–133 (2007).

    PubMed  Google Scholar 

  44. Braun, J. et al. Electron beam computed tomography in the evaluation of cardiac calcification in chronic dialysis patients. Am. J. Kidney Dis. 27, 394–401 (1996).

    CAS  PubMed  Google Scholar 

  45. Matsuoka, M. et al. Impact of high coronary artery calcification score (CACS) on survival in patients on chronic hemodialysis. Clin. Exp. Nephrol. 8, 54–58 (2004).

    PubMed  Google Scholar 

  46. Shantouf, R. S. et al. Total and individual coronary artery calcium scores as independent predictors of mortality in hemodialysis patients. Am. J. Nephrol. 31, 419–425 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sharples, E. J. et al. Coronary artery calcification measured with electron-beam computerized tomography correlates poorly with coronary artery angiography in dialysis patients. Am. J. Kidney Dis. 43, 313–319 (2004).

    PubMed  Google Scholar 

  48. O'Rourke, R. A. et al. American College of Cardiology/American Heart Association expert consensus document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. Circulation 102, 126–140 (2000).

    CAS  PubMed  Google Scholar 

  49. Rufino, M. et al. Heart valve calcification and calcium x phosphorus product in hemodialysis patients: analysis of optimum values for its prevention. Kidney Int. 63, (Suppl. 85), S115–S118 (2003).

    Google Scholar 

  50. Gulel, O. et al. Evidence of left ventricular systolic and diastolic dysfunction by color tissue Doppler imaging despite normal ejection fraction in patients on chronic hemodialysis program. Echocardiography 25, 569–574 (2008).

    PubMed  Google Scholar 

  51. Sharma, R. et al. Reduced longitudinal myocardial tissue velocities and myocardial deformation with strain rate imaging in patients with end stage renal disease and apparent normal left ventricular ejection fraction [abstract 954]. Eur. J. Echocardiogr. 7 (Suppl. 1), S163–S164 (2006).

    Google Scholar 

  52. Fijalkowski, M. et al. Effect of preload reduction by hemodialysis on myocardial ultrasonic characterization, left atrial volume, and Doppler tissue imaging in patients with end-stage renal disease. J. Am. Soc. Echocardiogr. 19, 1359–1364 (2006).

    PubMed  Google Scholar 

  53. le, E. H. et al. Preload dependence of new Doppler techniques limits their utility for left ventricular diastolic function assessment in hemodialysis patients. J. Am. Soc. Nephrol. 14, 1858–1862 (2003).

    Google Scholar 

  54. Hung, K. C. et al. Evaluating preload dependence of a novel Doppler application in assessment of left ventricular diastolic function during hemodialysis. Am. J. Kidney Dis. 43, 1040–1046 (2004).

    PubMed  Google Scholar 

  55. Amundsen, B. H. et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J. Am. Coll. Cardiol. 47, 789–793 (2006).

    PubMed  Google Scholar 

  56. Yan, P. et al. 2D-Speckle tracking echocardiography contributes to early identification of impaired left ventricular myocardial function in patients with chronic kidney disease. Nephron Clin. Pract. 118, c232–c240 (2011).

    PubMed  Google Scholar 

  57. Liu, Y. W. et al. Association of left ventricular longitudinal strain with mortality among stable hemodialysis patients with preserved left ventricular ejection fraction. Clin. J. Am. Soc. Nephrol. 8, 1564–1574 (2013).

    PubMed  PubMed Central  Google Scholar 

  58. Aoki, J. et al. Clinical and pathologic characteristics of dilated cardiomyopathy in hemodialysis patients. Kidney Int. 67, 333–340 (2005).

    PubMed  Google Scholar 

  59. Liu, Y. W. et al. Application of speckle-tracking echocardiography in detecting coronary artery disease in patients with maintenance hemodialysis. Blood Purif. 32, 38–42 (2011).

    PubMed  Google Scholar 

  60. Choi, J. O. et al. Effect of preload on left ventricular longitudinal strain by 2D speckle tracking. Echocardiography 25, 873–879 (2008).

    PubMed  Google Scholar 

  61. Jia, C. et al. Comparison of 2-D speckle tracking and tissue Doppler imaging in an isolated rabbit heart model. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2491–2502 (2010).

    PubMed  Google Scholar 

  62. Ibrahim, el-S. H. Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques—pulse sequences, analysis algorithms, and applications. J. Cardiovasc. Magn. Reson. 13, 36 (2011).

    PubMed Central  Google Scholar 

  63. Edwards, N. C. et al. Impaired circumferential and longitudinal myocardial deformation in early stage chronic kidney disease: the earliest features of uremic cardiomyopathy [poster presentation]. J. Cardiovasc. Magn. Reson. 15 (Suppl. 1), P153 (2013).

    PubMed Central  Google Scholar 

  64. Herzog, C. A. et al. Dobutamine stress echocardiography for the detection of significant coronary artery disease in renal transplant candidates. Am. J. Kidney Dis. 33, 1080–1090 (1999).

    CAS  PubMed  Google Scholar 

  65. Karagiannis, S. E. et al. Prognostic significance of renal function in patients undergoing dobutamine stress echocardiography. Nephrol. Dial. Transplant. 23, 601–607 (2008).

    PubMed  Google Scholar 

  66. Rakhit, D. J., Armstrong, K. A., Beller, E., Isbel, N. M. & Marwick, T. H. Risk stratification of patients with chronic kidney disease: results of screening strategies incorporating clinical risk scoring and dobutamine stress echocardiography. Am. Heart J. 152, 363–370 (2006).

    PubMed  Google Scholar 

  67. Bergeron, S. et al. Prognostic value of dobutamine stress echocardiography in patients with chronic kidney disease. Am. Heart J. 153, 385–391 (2007).

    PubMed  Google Scholar 

  68. Sharma, R. et al. Dobutamine stress echocardiography and the resting but not exercise electrocardiograph predict severe coronary artery disease in renal transplant candidates. Nephrol. Dial. Transplant. 20, 2207–2214 (2005).

    PubMed  Google Scholar 

  69. Schmidt, A., Stefenelli, T., Schuster, E. & Mayer, G. Informational contribution of noninvasive screening tests for coronary artery disease in patients on chronic renal replacement therapy. Am. J. Kidney Dis. 37, 56–63 (2001).

    CAS  PubMed  Google Scholar 

  70. Cordeiro, A. C. et al. Reliability of electrocardiographic surrogates of left ventricular mass in patients with chronic kidney disease. J. Hypertens. 32, 439–445 (2014).

    CAS  PubMed  Google Scholar 

  71. Kharabsheh, S. M., Al-Sugair, A., Al-Buraiki, J. & Al-Farhan, J. Overview of exercise stress testing. Ann. Saudi Med. 26, 1–6 (2006).

    PubMed  PubMed Central  Google Scholar 

  72. Atkinson, P. et al. Predictive value of myocardial and coronary imaging in the long-term outcome of potential renal transplant recipients. Int. J. Cardiol. 146, 191–196 (2011).

    PubMed  Google Scholar 

  73. Wong, C. F., Little, M. A., Vinjamuri, S., Hammad, A. & Harper, J. M. Technetium myocardial perfusion scanning in prerenal transplant evaluation in the United Kingdom. Transplant. Proc. 40, 1324–1328 (2008).

    CAS  PubMed  Google Scholar 

  74. De Vriese, A. S. et al. Comparison of the prognostic value of dipyridamole and dobutamine myocardial perfusion scintigraphy in hemodialysis patients. Kidney Int. 76, 428–436 (2009).

    CAS  PubMed  Google Scholar 

  75. Lentine, K. L. et al. Cardiac disease evaluation and management among kidney and liver transplantation candidates: a scientific statement from the American Heart Association and the American College of Cardiology Foundation. J. Am. Coll. Cardiol. 60, 434–480 (2012).

    PubMed  Google Scholar 

  76. Ragosta, M. et al. Coronary flow reserve abnormalities in patients with diabetes mellitus who have end-stage renal disease and normal epicardial coronary arteries. Am. Heart J. 147, 1017–1023 (2004).

    PubMed  Google Scholar 

  77. Lubberink, M. et al. Low-dose quantitative myocardial blood flow imaging using 15O-water and PET without attenuation correction. J. Nucl. Med. 51, 575–580 (2010).

    PubMed  Google Scholar 

  78. Knuuti, J., Kajander, S., Mäki, M. & Ukkonen, H. Quantification of myocardial blood flow will reform the detection of CAD. J. Nucl. Cardiol. 16, 497–506 (2009).

    PubMed  Google Scholar 

  79. Di Carli, M. F. & Murthy, V. L. Cardiac PET/CT for the evaluation of known or suspected coronary artery disease. Radiographics 31, 1239–1254 (2011).

    PubMed  PubMed Central  Google Scholar 

  80. Stewart, R. E. et al. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am. J. Cardiol. 67, 1303–1310 (1991).

    CAS  PubMed  Google Scholar 

  81. Bateman, T. M. et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J. Nucl. Cardiol. 13, 24–33 (2006).

    PubMed  Google Scholar 

  82. McIntyre, C. W. et al. Hemodialysis-induced cardiac dysfunction is associated with an acute reduction in global and segmental myocardial blood flow. Clin. J. Am. Soc. Nephrol. 3, 19–26 (2008).

    PubMed  PubMed Central  Google Scholar 

  83. Grover-McKay, M. et al. Detection of coronary artery disease with positron emission tomography and rubidium 82. Am. Heart J. 123, 646–652 (1992).

    CAS  PubMed  Google Scholar 

  84. Tamaki, N. et al. Value and limitation of stress thallium-201 single photon emission computed tomography: comparison with nitrogen-13 ammonia positron tomography. J. Nucl. Med. 29, 1181–1188 (1988).

    CAS  PubMed  Google Scholar 

  85. Marwick, T. H., Nemec, J. J., Stewart, W. J. & Salcedo, E. E. Diagnosis of coronary artery disease using exercise echocardiography and positron emission tomography: comparison and analysis of discrepant results. J. Am. Soc. Echocardiogr. 5, 231–238 (1992).

    CAS  PubMed  Google Scholar 

  86. Sampson, U. K., Dorbala, S., Limaye, A., Kwong, R. & Di Carli, M. F. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J. Am. Coll. Cardiol. 49, 1052–1058 (2007).

    CAS  PubMed  Google Scholar 

  87. Pisaniello, A. D. et al. Dobutamine stress cardiac MRI reliably predicts significant coronary disease in renal transplant candidates [poster presentation]. J. Cardiovasc. Magn. Reson. 16 (Suppl. 1), P181 (2014).

    PubMed Central  Google Scholar 

  88. Grobner, T. Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol. Dial. Transplant. 21, 1104–1108 (2006).

    CAS  PubMed  Google Scholar 

  89. Mowatt, G. et al. 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis. Heart 94, 1386–1393 (2008).

    CAS  PubMed  Google Scholar 

  90. de Graaf, F. R. et al. Diagnostic accuracy of 320-row multidetector computed tomography coronary angiography in the non-invasive evaluation of significant coronary artery disease. Eur. Heart J. 31, 1908–1915 (2010).

    PubMed  Google Scholar 

  91. Cannata-Andía, J. B., Rodríguez-García, M., Carrillo-López, N., Naves-Díaz, M. & Díaz-López, B. Vascular calcifications: pathogenesis, management, and impact on clinical outcomes. J. Am. Soc. Nephrol. 17 (12 Suppl. 3), S267–S273 (2006).

    PubMed  Google Scholar 

  92. de Bie, M. K. et al. CT coronary angiography is feasible for the assessment of coronary artery disease in chronic dialysis patients, despite high average calcium scores. PLoS ONE 8, e67936 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mao, J. et al. Coronary computed tomography angiography in dialysis patients undergoing pre-renal transplantation cardiac risk stratification. Cardiol. J. 17, 349–361 (2010).

    PubMed  Google Scholar 

  94. Chrysochou, C. et al. BOLD imaging: a potential predictive biomarker of renal functional outcome following revascularization in atheromatous renovascular disease. Nephrol. Dial. Transplant. 27, 1013–1019 (2012).

    CAS  PubMed  Google Scholar 

  95. Arnold, J. R. et al. Myocardial oxygenation in coronary artery disease: insights from blood oxygen level-dependent magnetic resonance imaging at 3 tesla. J. Am. Coll. Cardiol. 59, 1954–1964 (2012).

    PubMed  Google Scholar 

  96. Xiao, W., Xu, J., Wang, Q., Xu, Y. & Zhang, M. Functional evaluation of transplanted kidneys in normal function and acute rejection using BOLD MR imaging. Eur. J. Radiol. 81, 838–845 (2012).

    PubMed  Google Scholar 

  97. Karamitsos, T. D. et al. Relationship between regional myocardial oxygenation and perfusion in patients with coronary artery disease: insights from cardiovascular magnetic resonance and positron emission tomography. Circ. Cardiovasc. Imaging 3, 32–40 (2010).

    PubMed  Google Scholar 

  98. Kajander, S. et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation 122, 603–613 (2010).

    CAS  PubMed  Google Scholar 

  99. Dudley, C. & Harden, P. Module 4: Assessment for renal transplantation. UK Renal Association Clinical Practice Guidelines [online], (2008).

  100. Chertow, G. M., Burke, S. K., Raggi, P. & Treat to Goal Working Group. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int. 62, 245–252 (2002).

    CAS  PubMed  Google Scholar 

  101. Raggi, P. et al. Decrease in thoracic vertebral bone attenuation with calcium-based phosphate binders in hemodialysis. J. Bone Miner. Res. 20, 764–772 (2005).

    CAS  PubMed  Google Scholar 

  102. Block, G. A., Raggi, P., Bellasi, A., Kooienga, L. & Spiegel, D. M. Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int. 71, 438–441 (2007).

    CAS  PubMed  Google Scholar 

  103. Qunibi, W. et al. A 1-year randomized trial of calcium acetate versus sevelamer on progression of coronary artery calcification in hemodialysis patients with comparable lipid control: the Calcium Acetate Renagel Evaluation-2 (CARE-2) study. Am. J. Kidney Dis. 51, 952–965 (2008).

    CAS  PubMed  Google Scholar 

  104. Raggi, P. et al. The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis. Nephrol. Dial. Transplant. 26, 1327–1339 (2011).

    CAS  PubMed  Google Scholar 

  105. Barreto, D. V. et al. Phosphate binder impact on bone remodeling and coronary calcification—results from the BRiC study. Nephron Clin. Pract. 110, c273–c283 (2008).

    CAS  PubMed  Google Scholar 

  106. Russo, D. et al. The progression of coronary artery calcification in predialysis patients on calcium carbonate or sevelamer. Kidney Int. 72, 1255–1261 (2007).

    CAS  PubMed  Google Scholar 

  107. Delos Santos, R. B., Gmurczyk, A., Obhrai, J. S. & Watnick, S. G. Cardiac evaluation prior to kidney transplantation. Semin. Dial. 23, 324–329 (2010).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.Y.Y.C., D.G., N.A. and P.A.K. are in receipt of a Kidney Research UK project grant to investigate sudden cardiac death in dialysis patients; however, Kidney Research UK had no role in writing, reviewing or authorizing this manuscript and this article does not include data pertaining to the aforementioned study.

Author information

Authors and Affiliations

Authors

Contributions

D.Y.Y.C researched the material for this article. D.Y.Y.C., D.G., N.A., S.S. and P.A.K. contributed to discussion of content, writing and editing of the manuscript. P.A.K. managed the overall writing of the manuscript.

Corresponding author

Correspondence to Philip A. Kalra.

Ethics declarations

Competing interests

D.Y.Y.C. has received honoraria for travel expenses from Amgen Bursary and Takeda to attend conferences. S.S. has received honoraria for speaking from Amgen, Fresenius and Shire, and receives an Amgen educational grant for the UK Calciphylaxis Study. P.A.K. has received honoraria for speaker meetings, advisory boards and other consultancy work from Amgen, Boehringer Ingelheim, Fresenius, MSD, Novartis, Otsuka, Pfizer, Pharmacosmos, Reata, Sanofi, Shire, Takeda and Vifor. His department has received educational grants from Amgen, Sanofi and Shire. D.G. and N.A. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, D., Green, D., Abidin, N. et al. Cardiac imaging in patients with chronic kidney disease. Nat Rev Nephrol 11, 207–220 (2015). https://doi.org/10.1038/nrneph.2014.243

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.243

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing