Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Computer modelling of epilepsy

Key Points

  • Computer modelling of epilepsy is a branch of systems biology, a science that aims to combine the discoveries made by reductionist approaches into systems in order to understand how primary pathologies and secondary reactions interact to produce disease. Epilepsy, a dynamical disease of the brain, is well suited to study from the perspective of dynamical systems.

  • Epilepsy is a complex set of syndromes with the commonality of recurrent seizures. Not only do the many individual epilepsy syndromes have different causes, but most epilepsies develop owing to the interaction of many causes at molecular, cellular, network and developmental levels, defying efforts to define simple cause-and-effect relations and suggesting the need for computer modelling.

  • Knowledge discovery and data mining provides the substrate and support for dynamical modelling and allows the findings to be applied back to the research and clinical settings. The various dynamical modelling techniques that are used include stochastic models, low-dimensional (lumped) deterministic models and detailed neuronal network models.

  • Computer models are applied across the range of epilepsy phenomenology, from the molecular to the clinical. At the patient level, Markov models have been used to assess patterns of remission and relapse in pediatric epilepsy. At the molecular level, deterministic models can predict alterations in cellular activity with ion-channel mutations.

  • Many seizure models simulate activity at the network level. Some of these are lumped models, which use mean-field approximations to reduce the activity of many neurons to simple oscillators that are then coupled to produce complex activity patterns. Other models incorporate the details of neural activity and synaptic interactions, in order to reach down to the molecular level at which drug effects take place.

  • Uncommonly among areas of neuroscience research, computer modelling is immediately accessible through downloads of established models. An intrinsically collaborative activity, the future of the endeavour lies in the cooperative efforts of clinicians, experimentalists and modellers.

Abstract

Epilepsy is a complex set of disorders that can involve many areas of the cortex, as well as underlying deep-brain systems. The myriad manifestations of seizures, which can be as varied as déjà vu and olfactory hallucination, can therefore give researchers insights into regional functions and relations. Epilepsy is also complex genetically and pathophysiologically: it involves microscopic (on the scale of ion channels and synaptic proteins), macroscopic (on the scale of brain trauma and rewiring) and intermediate changes in a complex interplay of causality. It has long been recognized that computer modelling will be required to disentangle causality, to better understand seizure spread and to understand and eventually predict treatment efficacy. Over the past few years, substantial progress has been made in modelling epilepsy at levels ranging from the molecular to the socioeconomic. We review these efforts and connect them to the medical goals of understanding and treating the disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The river of epilepsy.
Figure 2: Markov model of childhood-epilepsy outcome in 602 children.
Figure 3: A lumped model of absence epilepsy.
Figure 4: A lumped model of MTLE.
Figure 5: Reduction of excitatory strength leads to seizure in a detailed neocortical model.

Similar content being viewed by others

References

  1. Haut, S. R., Bigal, M. E. & Lipton, R. B. Chronic disorders with episodic manifestations: focus on epilepsy and migraine. Lancet Neurol. 5, 148–157 (2006).

    PubMed  PubMed Central  Google Scholar 

  2. Sejnowski, T. J., Koch, C. & Churchland, P. S. Computational neuroscience. Science 241, 1299–1306 (1988).

    CAS  PubMed  Google Scholar 

  3. Meeren, H. K., Pijn, J. P., Van Luijtelaar, E. L., Coenen, A. M. L. & Lopes da Silva, F. H. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J. Neurosci. 22, 1480–1495 (2002). This study showed that seizures that seem to arise instantaneously actually have a distinct spatial course of spread.

    CAS  PubMed  Google Scholar 

  4. Bouwman, B. M., Suffczynski, P., Lopes da Silva, F. H., Maris, E. & van Rijn, C. M. Gabaergic mechanisms in absence epilepsy: a computational model of absence epilepsy simulating spike and wave discharges after vigabatrin in wag/rij rats. Eur. J. Neurosci. 25, 2783–2790 (2007).

    PubMed  Google Scholar 

  5. Destexhe, A. Spike-and-wave oscillations. Scholarpedia [online] (2007).

    Google Scholar 

  6. Luhmann, H. J., Mittmann, T., Luijtelaar, G. & Heinemann, U. Impairment of intracortical GABAergic inhibition in a rat model of absence epilepsy. Epilepsy Res. 22, 43–51 (1995).

    CAS  PubMed  Google Scholar 

  7. Chang, B. S. & Lowenstein, D. H. Epilepsy. N. Engl. J. Med. 349, 1257–1266 (2003). This paper provides an excellent brief introduction to the many different types of epilepsy and to current clinical and experimental issues.

    PubMed  Google Scholar 

  8. Scharfman, H. E. & Schwarcz, R. in Epilepsy: A Comprehensive Textbook 2nd edn (eds Engel, J., Pedley, T. A., Aicardi, J., Dichter, M. A. & Moshe, S.) 289–306 (Lippincott, New York, 2007).

    Google Scholar 

  9. Bear, D. M. & Fedio, P. Quantitative analysis of interictal behavior in temporal lobe epilepsy. Arch. Neurol. 34, 454–467 (1977).

    CAS  PubMed  Google Scholar 

  10. Feil, B., Fauser, S., Wuwer, Y., Glocker, F. X. & Schulze-Bonhage, A. Changes in intracortical excitability after successful epilepsy surgery. Epilepsy Res. 79, 55–62 (2008).

    PubMed  Google Scholar 

  11. Kalynchuk, L. E. Long-term amygdala kindling in rats as a model for the study of interictal emotionality in temporal lobe epilepsy. Neurosci. Biobehav. Rev. 24, 691–704 (2000).

    CAS  PubMed  Google Scholar 

  12. Lytton, W. W., Orman, R. & Stewart, M. Computer simulation of epilepsy: implications for seizure spread and behavioral dysfunction. Epilepsy Behav. 7, 336–344 (2005).

    PubMed  PubMed Central  Google Scholar 

  13. Pedley, T. & Scharfman, H. E. in Neurobiology of Disease (ed. Gilman, S.) 347–367 (Academic, New York, 2006).

    Google Scholar 

  14. Schramm, J., Aliashkevich, A. F. & Grunwald, T. Multiple subpial transections: outcome and complications in 20 patients who did not undergo resection. J. Neurosurg. 97, 39–47 (2002).

    PubMed  Google Scholar 

  15. Soltesz, I. & Staley, K. Computational Neuroscience in Epilepsy (Academic, San Diego, 2008). This book is an excellent compendium of recent results.

    Google Scholar 

  16. Fisher, R. S. et al. Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the international bureau for epilepsy (IBE). Epilepsia 46, 470–472 (2005).

    PubMed  Google Scholar 

  17. Baraban, S. C. et al. A large-scale mutagenesis screen to identify seizure-resistant zebrafish. Epilepsia 48, 1151–1157 (2007).

    PubMed  PubMed Central  Google Scholar 

  18. Song, J. & Tanouye, M. A. From bench to drug: human seizure modeling using Drosophila. Prog. Neurobiol. 84, 182–191 (2008).

    CAS  PubMed  Google Scholar 

  19. Engel, J. ILAE classification of epilepsy syndromes. Epilepsy Res. 70, S5–S10 (2006).

    PubMed  Google Scholar 

  20. Engel, J. Report of the ILAE classification core group. Epilepsia 47, 1558–1568 (2006).

    PubMed  Google Scholar 

  21. Engel, J. et al. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE task force on classification and terminology. Epilepsia 42, 796–803 (2001).

    PubMed  Google Scholar 

  22. Fisher, R. S. et al. Of cabbages and kings: some considerations on classifications, diagnostic schemes, semiology, and concepts. Epilepsia 44, 1–13 (2003).

    Google Scholar 

  23. ILAE. Proposal for revised classification of epilepsies and epileptic syndromes. Commission on classification and terminology of the International League Against Epilepsy. Epilepsia 30, 389–399 (1989).

  24. Nicholl, J. S. Cabbages and kings in the classification of seizures and the epilepsies. Epilepsia 44, 988 (2003).

    PubMed  Google Scholar 

  25. Wieser, H. G. ILAE commission report. Epilepsia 45, 695–714 (2004).

    PubMed  Google Scholar 

  26. Crampin, E. J. et al. Computational physiology and the physiome project. Exp. Physiol. 89, 1–26 (2004).

    PubMed  Google Scholar 

  27. Yu, A. C. Methods in biomedical ontology. J. Biomed. Inform. 39, 252–266 (2006).

    PubMed  Google Scholar 

  28. Glasscock, E., Qian, J., Yoo, J. W. & Noebels, J. L. Masking epilepsy by combining two epilepsy genes. Nature Neurosci. 10, 1554–1558 (2007). In a remarkable case of genetic nonlinearity, this study showed how combining two seizure genes reduced seizure propensity.

    CAS  PubMed  Google Scholar 

  29. Berg, A. T. & Shinnar, S. Do seizures beget seizures? An assessment of the clinical evidence in humans. J. Clin. Neurophysiol. 14, 102–110 (1997).

    CAS  PubMed  Google Scholar 

  30. Berkovic, S. F., Reutens, D. C., Andermann, E. & Andermann, F. in Epileptic Seizures and Syndromes (ed. Wolf, P.) 25–37 (Libbey Eurotext, Paris, 1994).

    Google Scholar 

  31. Mulley, J. C., Scheffer, I. E., Petrou, S. & Berkovic, S. F. Channelopathies as a genetic cause of epilepsy. Curr. Opin. Neurol. 16, 171–176 (2003).

    CAS  PubMed  Google Scholar 

  32. Stafstrom, C. E. Epilepsy: a review of selected clinical syndromes and advances in basic science. J. Cereb. Blood Flow Metab. 26, 983–1004 (2006).

    CAS  PubMed  Google Scholar 

  33. Franks, K. M., Bartol, T. M. & Sejnowski, T. J. A Monte Carlo model reveals independent signaling at central glutamatergic synapses. Biophys. J. 83, 2333–2348 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nunez, P. L. Neocortical dynamics and human EEG rhythms (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  35. Lytton, W. W. & Omurtag, A. Tonic-clonic transitions in computer simulation. J. Clin. Neurophysiol. 24, 175–181 (2007).

    PubMed  PubMed Central  Google Scholar 

  36. Frigg, R. & Hartmann, S. Models in science. Stanford Encyclopedia of Philosophy [online], (2008).

    Google Scholar 

  37. Dubitzky, W. Understanding the computational methodologies of systems biology. Brief. Bioinform. 7, 315–317 (2006).

    PubMed  Google Scholar 

  38. Goel, G., Chou, I. C. & Voit, E. O. Biological systems modeling and analysis: a biomolecular technique of the twenty-first century. J. Biomol. Tech. 17, 252–269 (2006).

    PubMed  PubMed Central  Google Scholar 

  39. Noble, D. The rise of computational biology. Nature Rev. Mol. Cell Biol. 3, 459–463 (2002).

    Google Scholar 

  40. Noble, D. Modeling the heart–from genes to cells to the whole organ. Science 295, 1678–1682 (2002).

    CAS  PubMed  Google Scholar 

  41. Kitano, H. Computational systems biology. Nature 420, 206–210 (2002).

    CAS  PubMed  Google Scholar 

  42. Bornholdt, S. Systems biology. less is more in modeling large genetic networks. Science 310, 449–451 (2005).

    CAS  PubMed  Google Scholar 

  43. Bosl, W. J. Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery. Bmc Syst. Biol. 1, 13 (2007).

    PubMed  PubMed Central  Google Scholar 

  44. King, R. D., Garrett, S. M. & Coghill, G. M. On the use of qualitative reasoning to simulate and identify metabolic pathways. Bioinformatics 21, 2017–2026 (2005).

    CAS  PubMed  Google Scholar 

  45. Reggia, J. A. in Proc. 2nd Ann. Symp. Comp. Application Med. Care 254–260 (IEEE, 1978).

    Google Scholar 

  46. Chute, C. G. Clinical classification and terminology: some history and current observations. J. Am. Med. Inform. Assoc. 7, 298–303 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chute, C. G. in Medical Informatics. Knowledge Management and Data Mining in Biomedicine Vol. 8 (eds Chen, H., Fuller, S. S., Friedman, C. & Hersch, W.) 163–182 (Springer, 2005).

    Google Scholar 

  48. Bertone, P. & Gerstein, M. Integrative data mining: the new direction in bioinformatics. IEEE Eng. Med. Biol. Mag. 20, 33–40 (2001).

    CAS  PubMed  Google Scholar 

  49. Cannon, R. C., Howell, F. W., Goddard, N. H. & De Schutter, E. Non-curated distributed databases for experimental data and models in neuroscience. Network 13, 415–428 (2002).

    CAS  PubMed  Google Scholar 

  50. Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).

    CAS  PubMed  Google Scholar 

  51. Wolfram, S. Computer software in science and mathematics. Sci. Am. 251, 188–204 (1984).

    Google Scholar 

  52. Prinz, A. A., Bucher, D. & Marder, E. Similar network activity from disparate circuit parameters. Nature Neurosci. 7, 1345–1352 (2004).

    CAS  PubMed  Google Scholar 

  53. Morgan, R. J., Santhakumar, V. & Soltesz, I. Modeling the dentate gyrus. Prog. Brain Res. 163, 639–658 (2007).

    PubMed  Google Scholar 

  54. Lytton, W. W. Neural query system: data-mining from within the neuron simulator. Neuroinformatics 4, 163–176 (2006).

    PubMed  PubMed Central  Google Scholar 

  55. Lytton, W. W. & Stewart, M. in Neuroinformatics (ed. Crasto, C.) 155–166 (Humana, New York, 2007).

    Google Scholar 

  56. Pon, L. S., Sun, M., Scheuer, M. L., Li, C. C. & Sclabassi, R. J. in 4th Int. Symp. Uncert. Model. Anal. 262–267 (IEEE, 2003).

    Google Scholar 

  57. Ullah, M. & Wolkenhauer, O. Family tree of Markov models in systems biology. IET Syst. Biol. 1, 247–254 (2007).

    CAS  PubMed  Google Scholar 

  58. Ermentrout, B. Neural networks as spatio-temporal pattern-forming systems. Rep. Prog. Phys. 61, 353–430 (1998).

    Google Scholar 

  59. Holmes, W. & Rall, W. Estimating the electrotonic structure of neurons with compartmental models. J. Neurophysiol. 68, 1438–1452 (1992).

    CAS  PubMed  Google Scholar 

  60. Beggs, J. M. & Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003).

    CAS  PubMed  Google Scholar 

  61. Delorme, A. & Thorpe, S. J. Spikenet: an event-driven simulation package for modelling large networks of spiking neurons. Network 14, 613–627 (2003).

    PubMed  Google Scholar 

  62. Lytton, W. W. & Stewart, M. Rule-based firing for network simulations. Neurocomputing 69, 1160–1164 (2006).

    Google Scholar 

  63. Mattia, M. & Del Giudice, P. Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Comput. 12, 2305–2329 (2000).

    CAS  PubMed  Google Scholar 

  64. Rudolph, M. & Destexhe, A. Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies. Neural Comput. 18, 2146–2210 (2006).

    PubMed  Google Scholar 

  65. Watts, L. in Advances in neural information processing systems vol. 6 (eds Cowan, J. D., Tesauro, G. & Alspector, J.) 927–934 (Morgan Kaufmann, 1994).

    Google Scholar 

  66. Milton, J. G., Gotman, J., Remillard, G. M. & Andermann, F. Timing of seizure recurrence in adult epileptic patients: a statistical analysis. Epilepsia 28, 471–478 (1987).

    CAS  PubMed  Google Scholar 

  67. Haut, S. R. Seizure clustering. Epilepsy Behav. 8, 50–55 (2006).

    PubMed  Google Scholar 

  68. Haut, S. R., Lipton, R. B., LeValley, A. J., Hall, C. B. & Shinnar, S. Identifying seizure clusters in patients with epilepsy. Neurology 65, 1313–1315 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Iasemidis, L. D., Olson, L. D., Savit, R. S. & Sackellares, J. C. Time dependencies in the occurrences of epileptic seizures. Epilepsy Res. 17, 81–94 (1994).

    CAS  PubMed  Google Scholar 

  70. Albert, P. S. A two-state Markov mixture model for a time series of epileptic seizure counts. Biometrics 47, 1371–1381 (1991).

    CAS  PubMed  Google Scholar 

  71. Hopkins, A., Davies, P. & Dobson, C. Mathematical models of patterns of seizures. Their use in the evaluation of drugs. Arch. Neurol. 42, 463–467 (1985).

    CAS  PubMed  Google Scholar 

  72. Le, N. D., Leroux, B. G. & Puterman, M. L. Exact likelihood evaluation in a Markov mixture model for time series of seizure counts. Biometrics 48, 317–323 (1992).

    CAS  PubMed  Google Scholar 

  73. Sunderam, S., Osorio, I., Frei, A. & Watkins, J. F. Stochastic modeling and prediction of experimental seizures in sprague-dawley rats. J. Clin. Neurophysiol. 18, 275–282 (2001). This study applied a Markov model to the underlying states to be predicted by a seizure-prediction algorithm.

    CAS  PubMed  Google Scholar 

  74. Wong, S., Gardner, A. B., Krieger, A. M. & Litt, B. A stochastic framework for evaluating seizure prediction algorithms using hidden Markov models. J. Neurophysiol. 97, 2525–2532 (2007).

    PubMed  Google Scholar 

  75. Haut, S. R., Hall, C. B., Le, V. & Lipton, R. B. Can patients with epilepsy predict their seizures? Neurology 68, 262–266 (2007).

    PubMed  Google Scholar 

  76. Haut, S. R., Shinnar, S. & Moshe, S. L. Seizure clustering: risks and outcomes. Epilepsia 46, 146–149 (2005).

    PubMed  Google Scholar 

  77. Berg, A. T. et al. Modeling remission and relapse in pediatric epilepsy: application of a Markov process. Epilepsy Res. 60, 31–40 (2004).

    PubMed  Google Scholar 

  78. Blumenfeld, H. et al. Early treatment suppresses the development of spike-wave epilepsy in a rat model. Epilepsia 49, 400–409 (2008).

    CAS  PubMed  Google Scholar 

  79. Glass, L. & Mackey, M. C. From Clocks to Chaos: the Rhythms of Life (Princeton Univ. Press, 1988).

    Google Scholar 

  80. Li, T. Y. & Yorke, J. A. Period three implies chaos. Amer. Math. Monthly 82, 985–992 (1975).

    Google Scholar 

  81. Nunez, P. L. & Srinivasan, R. Electric Fields of the Brain: the Neurophysics of EEG 2nd edn (Oxford Univ. Press, New York, 2005).

    Google Scholar 

  82. Freeman, W. J. Models of the dynamics of neural populations. Electroencephalogr. Clin. Neurophysiol. Suppl. 34, 9–18 (1978).

    Google Scholar 

  83. Lopes da Silva, F. H., Hoeks, A., Smits, H. & Zetterberg, L. H. Model of brain rhythmic activity. The alpha-rhythm of the thalamus. Kybernetik 15, 27–37 (1974).

    CAS  PubMed  Google Scholar 

  84. Lopes da Silva, F. H., van Rotterdam, A., Barts, P., van Heusden, E. & Burr, W. Models of neuronal populations: the basic mechanisms of rhythmicity. Prog. Brain Res. 45, 281–308 (1976).

    CAS  PubMed  Google Scholar 

  85. Wilson, H. R. & Cowan, J. D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chakravarthy, N., Sabesan, S., Iasemidis, L. & Tsakalis, K. Controlling synchronization in a neuron-level population model. Int. J. Neural Syst. 17, 123–138 (2007).

    PubMed  Google Scholar 

  87. Ermentrout, B. & Saunders, D. Phase resetting and coupling of noisy neural oscillators. J. Comput. Neurosci. 20, 179–190 (2006).

    PubMed  Google Scholar 

  88. Strogatz, S. H. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000).

    Google Scholar 

  89. Tsakalis, K., Chakravarthy, N. & Iasemidis, L. in 44th IEEE Conf. Decision Control 2975–2981 (IEEE, 2005).

    Google Scholar 

  90. Williams, T. L. Phase coupling by synaptic spread in chains of coupled neuronal oscillators. Science 258, 662–665 (1992).

    CAS  PubMed  Google Scholar 

  91. Winfree, A. T. Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967).

    CAS  PubMed  Google Scholar 

  92. Liley, D. T. & Bojak, I. Understanding the transition to seizure by modeling the epileptiform activity of general anesthetic agents. J. Clin. Neurophysiol. 22, 300–313 (2005).

    CAS  PubMed  Google Scholar 

  93. Robinson, P. A., Rennie, C. J. & Rowe, D. L. Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, 041924 (2002).

    CAS  PubMed  Google Scholar 

  94. Suffczynski, P., Kalitzin, S. & Lopes da Silva, F. H. Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126, 467–484 (2004).

    CAS  PubMed  Google Scholar 

  95. Wendling, F. Neurocomputational models in the study of epileptic phenomena. J. Clin. Neurophysiol. 22, 285–287 (2005).

    PubMed  PubMed Central  Google Scholar 

  96. Wilson, M. T., Sleigh, J. W., Steyn-Ross, D. A. & Steyn-Ross, M. L. General anesthetic-induced seizures can be explained by a mean-field model of cortical dynamics. Anesthesiology 104, 588–593 (2006).

    PubMed  Google Scholar 

  97. Lopes da Silva, F. H. et al. Dynamical diseases of brain systems: different routes to epileptic seizures. IEEE Trans. Biomed. Eng. 50, 540–548 (2003). This paper provides an excellent review of lumped models.

    PubMed  Google Scholar 

  98. Suffczynski, P. et al. Dynamics of epileptic phenomena determined from statistics of ictal transitions. IEEE Trans. Biomed. Eng. 53, 524–532 (2006).

    PubMed  Google Scholar 

  99. Ferlazzo, E., Zifkin, B. G., Andermann, E. & Andermann, F. Cortical triggers in generalized reflex seizures and epilepsies. Brain 128, 700–710 (2005).

    PubMed  Google Scholar 

  100. Inouye, Y. Higher brain function as precipitant of seizure. Neurol. Asia 12, 1–5 (2007).

    Google Scholar 

  101. Wendling, F., Bartolomei, F., Bellanger, J. J. & Chauvel, P. Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur. J. Neurosci. 15, 1499–1508 (2002). This study applied a lumped model to MTLE.

    CAS  PubMed  Google Scholar 

  102. Lemasson, G., Marder, E. & Abbott, L. F. Activity-dependent regulation of conductances in model neurons. Science 259, 1915–1917 (1993). This classic modelling study demonstrated the interaction of fast and slow processes.

    CAS  PubMed  Google Scholar 

  103. Izhikevich, E. M. & Edelman, G. M. Large-scale model of mammalian thalamocortical systems. Proc. Natl Acad. Sci. USA 105, 3593–3598 (2008).

    CAS  PubMed  Google Scholar 

  104. Lytton, W. W. & Sejnowski, T. J. Computer model of ethosuximide's effect on a thalamic neuron. Ann. Neurol. 32, 131–139 (1992).

    CAS  PubMed  Google Scholar 

  105. Spampanato, J., Aradi, I., Soltesz, I. & Goldin, A. L. Increased neuronal firing in computer simulations of sodium channel mutations that cause generalized epilepsy with febrile seizures plus. J. Neurophysiol. 91, 2040–2050 (2004).

    PubMed  Google Scholar 

  106. Traub, R. D. et al. Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J. Neurophysiol. 93, 2194–2232 (2005). This paper provides a detailed model of the operation of a single column, with applications in epilepsy and normal activity.

    PubMed  Google Scholar 

  107. Traub, R. D., Contreras, D. & Whittington, M. A. Combined experimental/simulation studies of cellular and network mechanisms of epileptogenesis in vitro and in vivo. J. Clin. Neurophysiol. 22, 330–342 (2005).

    PubMed  Google Scholar 

  108. Traub, R. D., Jefferys, J. G. R. & Whittington, M. A. Fast Oscillations in Cortical Circuits (MIT Press, Cambridge, Massachusetts, 1999).

    Google Scholar 

  109. Traub, R. D., Miles, R. & Wong, R. K. S. Model of the origin of rhythmic population oscillations in the hippocampal slice. Science 243, 1319–1325 (1989).

    CAS  PubMed  Google Scholar 

  110. Destexhe, A. & Sejnowski, T. J. Thalamocortical Assemblies: How Ion Channels, Single Neurons and Large-Scale Networks Organize Sleep Oscillations (Oxford Univ. Press, New York, 2001). This book details the application of paired experimentation and modelling to the dynamics behind absence seizures and sleep spindles.

    Google Scholar 

  111. Bal, T., Debay, D. & Destexhe, A. Cortical feedback controls the frequency and synchrony of oscillations in the visual thalamus. J. Neurosci. 20, 7478–7488 (2000).

    CAS  PubMed  Google Scholar 

  112. Blumenfeld, H. & McCormick, D. A. Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. J. Neurosci. 20, 5153–5162 (2000).

    CAS  PubMed  Google Scholar 

  113. Destexhe, A., Contreras, D. & Steriade, M. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J. Neurosci. 19, 4595–4608 (1999).

    CAS  PubMed  Google Scholar 

  114. Dudek, F. E. & Sutula, T. P. Epileptogenesis in the dentate gyrus: a critical perspective. Prog. Brain Res. 163, 755–773 (2007).

    CAS  PubMed  Google Scholar 

  115. Houser, C. R., Miyashiro, J. E., Swartz, B. E., Walsh, G. O. & Rich, J. R. Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J. Neurosci. 10, 267–282 (1990).

    CAS  PubMed  Google Scholar 

  116. Mathern, G. W. et al. Childhood generalized and mesial temporal epilepsies demonstrate different amounts and patterns of hippocampal neuron loss and mossy fibre synaptic reorganization. Brain 119, 965–987 (1996).

    PubMed  Google Scholar 

  117. Parent, J. M. Adult neurogenesis in the intact and epileptic dentate gyrus. Prog. Brain Res. 163, 529–540 (2007).

    CAS  PubMed  Google Scholar 

  118. Parent, J. M. et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J. Neurosci. 17, 3727–3738 (1997). This study showed that cells are added to the hippocampus during epileptogenesis.

    CAS  PubMed  Google Scholar 

  119. Sutula, T., Cascino, G., Cavazos, J., Parada, I. & Ramirez, L. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann. Neurol. 26, 321–330 (1989).

    CAS  PubMed  Google Scholar 

  120. Sloviter, R. S. The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Ann. Neurol. 35, 640–654 (1994).

    CAS  PubMed  Google Scholar 

  121. Lytton, W. W., Hellman, K. M. & Sutula, T. P. Computer models of hippocampal circuit changes of the kindling model of epilepsy. Artif. Intel. Med. 13, 81–98 (1998).

    CAS  Google Scholar 

  122. Ratzliff, A. H., Howard, A. L., Santhakumar, V., Osapay, I. & Soltesz, I. Rapid deletion of mossy cells does not result in a hyperexcitable dentate gyrus: implications for epileptogenesis. J. Neurosci. 24, 2259–2269 (2004).

    CAS  PubMed  Google Scholar 

  123. Bradley, D. C., Mascaro, M. & Santhakumar, S. A relational database for trial-based behavioral experiments. J. Neurosci. Methods 141, 75–82 (2005).

    PubMed  Google Scholar 

  124. Morgan, R. J. & Soltesz, I. Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc. Natl Acad. Sci. USA 105, 6179–6184 (2008). A study showing how graph theory can make predictions that can be confirmed in an exploration of neuronal wiring.

    CAS  PubMed  Google Scholar 

  125. Dyhrfjeld-Johnsen, J. et al. Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J. Neurophysiol. 97, 1566–1587 (2007).

    PubMed  Google Scholar 

  126. Santhakumar, V., Aradi, I. & Soltesz, I. Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J. Neurophysiol. 93, 437–453 (2005).

    PubMed  Google Scholar 

  127. Watts, D. J. & Strogatz, S. H. Collective dynamics of 'small-world' networks. Nature 393, 440–442 (1998).

    CAS  Google Scholar 

  128. Lytton, W. W. From Computer to Brain (Springer, New York, 2002).

    Google Scholar 

  129. Scharfman, H. E. The neurobiology of epilepsy. Curr. Neurol. Neurosci. Rep. 7, 348–354 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Bazhenov, M., Timofeev, I., Steriade, M. & Sejnowski, T. J. Computational models of thalamocortical augmenting responses. J. Neurosci. 18, 6444–6465 (1998).

    CAS  PubMed  Google Scholar 

  131. Destexhe, A. Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents? Eur. J. Neurosci. 11, 2175–2181 (1999).

    CAS  PubMed  Google Scholar 

  132. Destexhe, A., McCormick, D. A. & Sejnowski, T. J. Thalamic and thalamocortical mechanisms underlying 3 Hz spike-and-wave discharges. Prog. Brain Res. 121, 289–307 (1999).

    CAS  PubMed  Google Scholar 

  133. Lytton, W. W., Destexhe, A. & Sejnowski, T. J. Control of slow oscillations in the thalamocortical neuron: a computer model. Neuroscience 70, 673–684 (1996). This review traces absence manifestations from genes to the whole animal.

    CAS  PubMed  Google Scholar 

  134. Crunelli, V. & Leresche, N. Childhood absence epilepsy: genes, channels, neurons and networks. Nature Rev. Neurosci. 3, 371–382 (2002).

    CAS  Google Scholar 

  135. Lytton, W. W. & Sejnowski, T. J. Inhibitory interneurons may help synchronize oscillations in cortical pyramidal neurons. J. Neurophysiol. 66, 1059–1079 (1991).

    CAS  PubMed  Google Scholar 

  136. Cossart, R., Bernard, C. & Ben-Ari, Y. Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signalling in epilepsies. Trends Neurosci. 28, 108–115 (2005). This paper provides a useful introduction to the roles and controversies of GABA signalling.

    CAS  PubMed  Google Scholar 

  137. Bernard, C. Dogma and dreams: experimental lessons for epilepsy mechanism chasers. Cell. Mol. Life Sci. 62, 1177–1181 (2005).

    CAS  PubMed  Google Scholar 

  138. Hereld, M., Stevens, R. L., Drongelen, W. & Lee, H. C. Developing a petascale neural simulation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 6, 3999–4002 (2004).

    CAS  PubMed  Google Scholar 

  139. Hereld, M., Stevens, R. L., Lee, H. C. & van Drongelen, W. Framework for interactive million-neuron simulation. J. Clin. Neurophysiol. 24, 189–196 (2007).

    PubMed  Google Scholar 

  140. Hereld, M., Stevens, R. L., Teller, J. & van Drongelen, W. Large neural simulations on large parallel computers. Int. J. Bioelectromag. 7, 44–46 (2005).

    Google Scholar 

  141. Markram, H. The blue brain project. Nature Rev. Neurosci. 7, 153–160 (2006).

    CAS  Google Scholar 

  142. Migliore, M., Cannia, C., Lytton, W. W. & Hines, M. L. Parallel network simulations with neuron. J. Comput. Neurosci. 6, 119–129 (2006).

    Google Scholar 

  143. van Drongelen, W. et al. Emergent epileptiform activity in neural networks with weak excitatory synapses. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 236–241 (2005).

    PubMed  Google Scholar 

  144. van Drongelen, W., Lee, H. C., Stevens, R. L. & Hereld, M. Propagation of seizure-like activity in a model of neocortex. J. Clin. Neurophysiol. 24, 182–188 (2007).

    PubMed  Google Scholar 

  145. Gayatri, N. A. & Livingston, J. H. Aggravation of epilepsy by anti-epileptic drugs. Dev. Med. Child. Neurol. 48, 394–398 (2006).

    CAS  PubMed  Google Scholar 

  146. Vendrame, M. et al. Aggravation of seizures and/or EEG features in children treated with oxcarbazepine monotherapy. Epilepsia 48, 2116–2120 (2007).

    CAS  PubMed  Google Scholar 

  147. Blois, M. S. Medicine and the nature of vertical reasoning. N. Engl. J. Med. 318, 847–851 (1988).

    CAS  PubMed  Google Scholar 

  148. Ng, A., Bursteinas, B., Gao, Q., Mollison, E. & Zvelebil, M. Resources for integrative systems biology: from data through databases to networks and dynamic system models. Brief. Bioinform. 7, 318–330 (2006).

    CAS  PubMed  Google Scholar 

  149. Rogawski, M. A. Diverse mechanisms of antiepileptic drugs in the development pipeline. Epilepsy Res. 69, 273–294 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Rogawski, M. A. Molecular targets versus models for new antiepileptic drug discovery. Epilepsy Res. 68, 22–28 (2006).

    PubMed  PubMed Central  Google Scholar 

  151. Rogawski, M. A. & Loscher, W. The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nature Med. 10, 685–692 (2004).

    CAS  PubMed  Google Scholar 

  152. Le Novere, N. The long journey to a systems biology of neuronal function. BMC Syst. Biol. 1, 28 (2007).

    PubMed  PubMed Central  Google Scholar 

  153. De Schutter, E. Why are computational neuroscience and systems biology so separate? Plos Comput. Biol. 4, e1000078 (2008).

    PubMed  PubMed Central  Google Scholar 

  154. Kellinghaus, C. et al. Specific epileptic syndromes are rare even in tertiary epilepsy centers: a patient-oriented approach to epilepsy classification. Epilepsia 45 (Suppl. 1), 268–275 (2004).

    PubMed  Google Scholar 

  155. Loddenkemper, T. et al. A proposal for a five-dimensional patient-oriented epilepsy classification. Epileptic Disord. 7, 308–316 (2005).

    PubMed  Google Scholar 

  156. Luders, H. et al. Semiological seizure classification. Epilepsia 39, 1006–1013 (1998).

    CAS  PubMed  Google Scholar 

  157. Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T. & Shepherd, G. M. Modeldb: a database to support computational neuroscience. J. Comput. Neurosci. 17, 73–77 (2004).

    Google Scholar 

  158. Gilat, A. MATLAB: An Introduction with Applications 3rd edn (Wiley, New York, 2008).

    Google Scholar 

  159. Ermentrout, B. Simulating, Analyzing, and Animating Dynamical Systems: A Guide to Xppaut for Researchers and Students (Society for Industrial Mathematics, Philadelphia, 2002).

    Google Scholar 

  160. Bower, J. & Beeman, D. The Book of Genesis 2nd edn (Springer, New York 1998).

    Google Scholar 

  161. Carnevale, N. T. & Hines, M. L. The NEURON Book (Cambridge Univ. Press, New York, 2006).

    Google Scholar 

  162. Cannon, R. C. et al. Interoperability of neuroscience modeling software: current status and future directions. Neuroinformatics 5, 127–138 (2007).

    PubMed  PubMed Central  Google Scholar 

  163. Brette, R. et al. Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput. Neurosci. 23, 349–398 (2007).

    PubMed  PubMed Central  Google Scholar 

  164. Lennox, W. G. & Lennox, M. A. Epilepsy and related disorders. (Little Brown, New York, 1960).

    Google Scholar 

Download references

Acknowledgements

I would like to thank S. Neymotin, J. Reggia, P. Rutecki, P. Suffczynski, W. van Drongelen and three anonymous reviewers for many helpful suggestions, and the National Institute of Health for 20 years of support.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

ModelDB 

Hodgkin–Huxley equations

model applied to MTLE

model of absence epilepsy

Wilson and Cowan's 1972 model

FURTHER INFORMATION

William W. Lytton's homepage

From Computer to Brain

Genesis

Matlab

Neuron

Octave

Task force on epilepsy classification and terminology

XppAuT

Glossary

Generalized seizure

A seizure that seems to start simultaneously across cortical sites.

Focal seizure

A seizure that starts at a particular location in the brain.

Secondary generalization

A process whereby an initially focal seizure spreads to involve the entire brain.

Dynamical model

A computer or physical model that reproduces change in an experimentally observable feature. In the case of dynamical models of motion, these changes would be in position and velocity.

Tonic–clonic

A common pattern of convulsion that involves a phase of contraction of the extensor muscles (the tonic) followed by a phase of alternating flexor–extensor contractions (the clonic phase).

Seizure semiology

The detailed study of the progress of a seizure.

Scale model

A small physical model of an object, with correct proportions.

Verbal model

An informal descriptive explanation of an object or phenomenon.

Systems biology

The analysis of element interactions in biological systems. Owing to the complexity of these systems, the computer is often used as a tool for analysis and simulation. Objects of study include metabolic and expression pathways but extend up to the study of macroscopic systems. The goal is to insert the results of reductionist study back into the systems from which they were extracted.

Parameter

In a computer model, parameters are the constant values in the set of equations that describe the model. These values are set by the user and determine the behaviour of the model.

Stochastic model

A computer model that attempts to replicate phenomenology by drawing exemplars (which might be locations or time intervals) from a probability distribution. The prototypical example is the model of Brownian motion.

Poisson model

A stochastic model that generates time intervals that are independently drawn from a Poisson distribution. The Poisson distribution is the limiting case of the binomial distribution for large 'n' (number of events) and small 'p' (probability of event occurrence).

Monte Carlo model

A stochastic model that uses repeated random sampling from one or more distributions.

Markov model

A stochastic model that uses a series of connected states with transition probabilities between them.

Discretization

A process whereby continuous time is divided into timesteps, or whereby continuous space is divided into segments or compartments, in order to simulate continuous reality in the discontinuous words of computer memory.

Finite-difference approximation

A process whereby the infinitesimal changes of continuous curves (in time or space) are approximated with a finite change that is based on the curve's values at a discrete timestep or spatial interval.

State variable

In a dynamical model, state variables are the values that change with time.

Trajectory

In a dynamical model, the trajectory is the path that is followed by the n state variables through the n-dimensional state space. This is a higher-dimensional generalization of the notion of trajectory as a term that is commonly used to describe motion. However, trajectories in models of motion include velocities as well as locations.

Attractor

The set of stable trajectories of a dynamical system in state-space. If a trajectory is perturbed away from an attractor it will tend to move back to it.

Mean-field approximation

An approximation that is used when large numbers of elements (for example, neurons) make it impracticable to model the influence of each element individually. Instead, the effect of a large ensemble of elements is estimated as a field, the influence of which is widely felt.

Lumped model

A model that approximates the activity of a large ensemble of neurons using a single-state variable that typically represents the proportion of neurons that are active at a given time.

Cortical minicolumn

A group of cortical cells that interact with each other more than they interact with neurons in neighbouring columns. Although columnar structure was originally identified physiologically as groups of neurons with shared properties, it has since been sought anatomically and variously identified as groups of 100–200 neurons (30 μm across).

State space

The dimensionality of a dynamic system. The current state of the system can be described as a point in state-space. Also called phase space.

Parameter space

The m-dimensional space in which the parameters of a system can be defined as a single point.

Ictogenesis

The generation of a seizure (the ictus) by dynamical, cellular and synaptic processes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lytton, W. Computer modelling of epilepsy. Nat Rev Neurosci 9, 626–637 (2008). https://doi.org/10.1038/nrn2416

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2416

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing