Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses

Key Points

  • Alzheimer's disease (AD) is a highly heritable disorder, the genetic underpinnings of which remain incompletely understood despite intense research over the past 30 years.

  • Over 1,000 individual genetic-association studies have been published in the field of AD; these studies are exhaustively annotated and systematically meta-analysed in a continuously updated online database called AlzGene.

  • Genome-wide association (GWA) studies, which have the potential to pinpoint new pathogenetic pathways by simultaneously testing thousands of genetic markers in a largely hypothesis-free fashion, are becoming increasingly available for AD.

  • Over 20 genetic loci currently show evidence for a significant role in modifying risk for AD in the AlzGene meta-analyses. One-third of these were originally described in GWA studies.

  • The potential functional and pathogenetic implications of some of the most interesting of these genes (angiotensin I converting enzyme (ACE); cholesterol 25-hydroxylase (CH25H); cholinergic receptor, nicotinic, β2 (CHRNB2); cystatin C (CST3); GRB2-associated binding protein 2 (GAB2); lamin A/C (LMNA); microtubule-associated protein tau (MAPT); prion protein (PRNP); sortilin-related receptor, L(DLR class) A repeats-containing (SORL1) and transferrin (TF)) can now be summarized.

Abstract

The genetic underpinnings of Alzheimer's disease (AD) remain largely elusive despite early successes in identifying three genes that cause early-onset familial AD (those that encode amyloid precursor protein (APP) and the presenilins (PSEN1 and PSEN2)), and one genetic risk factor for late-onset AD (the gene that encodes apolipoprotein E (APOE)). A large number of studies that aimed to help uncover the remaining disease-related loci have been published in recent decades, collectively proposing or refuting the involvement of over 500 different gene candidates. Systematic meta-analyses of these studies currently highlight more than 20 loci that have modest but significant effects on AD risk. This Review discusses the putative pathogenetic roles and common biochemical pathways of some of the most genetically and biologically compelling of these potential AD risk factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of possible pathogenetic roles for candidate early-onset familial AD genes covered in this Review.

Similar content being viewed by others

References

  1. Tanzi, R. E. & Bertram, L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120, 545–555 (2005).

    CAS  PubMed  Google Scholar 

  2. Bergem, A. L., Engedal, K. & Kringlen, E. The role of heredity in late-onset Alzheimer disease and vascular dementia. A twin study. Arch. Gen. Psychiatry 54, 264–270 (1997).

    CAS  PubMed  Google Scholar 

  3. Daw, E. W. et al. The number of trait loci in late-onset Alzheimer disease. Am. J. Hum. Genet. 66, 196–204 (2000).

    CAS  PubMed  Google Scholar 

  4. Gatz, M. et al. Role of genes and environments for explaining Alzheimer disease. Arch. Gen. Psychiatry 63, 168–174 (2006). This is the most recent and the most extensive AD twin study, and provides probably the most realistic heritability estimates.

    PubMed  Google Scholar 

  5. Strittmatter, W. J. et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 1977–1981 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Saunders, A. M. et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology 43, 1467–1472 (1993).

    CAS  PubMed  Google Scholar 

  7. Bertram, L., McQueen, M. B., Mullin, K., Blacker, D. & Tanzi, R. E. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nature Genet. 39, 17–23 (2007). This paper describes the first complex-disease meta-analysis database and the methodology behind the AlzGene approach.

    CAS  PubMed  Google Scholar 

  8. Sloane, P. D. et al. The public health impact of Alzheimer's disease, 2000–2050: potential implication of treatment advances. Annu. Rev. Public Health 23, 213–231 (2002).

    PubMed  Google Scholar 

  9. Brookmeyer, R., Gray, S. & Kawas, C. Projections of Alzheimer's disease in the United States and the public health impact of delaying disease onset. Am. J. Public Health 88, 1337–1342 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Grupe, A. et al. Evidence for novel susceptibility genes for late-onset Alzheimer's disease from a genome-wide association study of putative functional variants. Hum. Mol. Genet. 16, 865–873 (2007). This was the first genome-wide AD association study. It focused on polymorphisms in or near coding regions.

    CAS  PubMed  Google Scholar 

  11. Coon, K. D. et al. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer's disease. J. Clin. Psychiatry 68, 613–618 (2007).

    CAS  PubMed  Google Scholar 

  12. Li, H. et al. Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch. Neurol. 65, 45–53 (2008). This high-density genome-wide association study identified several potential new AD loci, including several that had previously been implicated by meta-analyses.

    PubMed  Google Scholar 

  13. Reiman, E. M. et al. GAB2 alleles modify Alzheimer's risk in APOE ε4 carriers. Neuron 54, 713–720 (2007). This was the first high-density genome-wide AD association study. It implicated GAB2 as a potential new AD locus.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Henschke, P. J., Bell, D. A. & Cape, R. D. Alzheimer's disease and HLA. Tissue Antigens 12, 132–135 (1978).

    CAS  PubMed  Google Scholar 

  15. Sayed-Tabatabaei, F. A., Oostra, B. A., Isaacs, A., van Duijn, C. M. & Witteman, J. C. ACE polymorphisms. Circ. Res. 98, 1123–1133 (2006).

    CAS  PubMed  Google Scholar 

  16. Keavney, B. et al. Measured haplotype analysis of the angiotensin-I converting enzyme gene. Hum. Mol. Genet. 7, 1745–1751 (1998).

    CAS  PubMed  Google Scholar 

  17. Hu, J., Igarashi, A., Kamata, M. & Nakagawa, H. Angiotensin-converting enzyme degrades Alzheimer amyloidβ-peptide (Aβ); retards Aβ aggregation, deposition, fibril formation; and inhibits cytotoxicity. J. Biol. Chem. 276, 47863–47868 (2001).

    CAS  PubMed  Google Scholar 

  18. Hemming, M. L. & Selkoe, D. J. Amyloidβ-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J. Biol. Chem. 280, 37644–37650 (2005).

    CAS  PubMed  Google Scholar 

  19. Eckman, E. A. et al. Regulation of steady-state β-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme. J. Biol. Chem. 281, 30471–30478 (2006).

    CAS  PubMed  Google Scholar 

  20. Hemming, M. L., Selkoe, D. J. & Farris, W. Effects of prolonged angiotensin-converting enzyme inhibitor treatment on amyloid β-protein metabolism in mouse models of Alzheimer disease. Neurobiol. Dis. 26, 273–281 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Takeda, S., Sato, N., Ogihara, T. & Morishita, R. The renin-angiotensin system, hypertension and cognitive dysfunction in Alzheimer's disease: new therapeutic potential. Front. Biosci. 13, 2253–2265 (2008).

    CAS  PubMed  Google Scholar 

  22. Ohrui, T. et al. Effects of brain-penetrating ACE inhibitors on Alzheimer disease progression. Neurology 63, 1324–1325 (2004).

    CAS  PubMed  Google Scholar 

  23. Savaskan, E. et al. Cortical alterations of angiotensin converting enzyme, angiotensin II and AT1 receptor in Alzheimer's dementia. Neurobiol. Aging 22, 541–546 (2001).

    CAS  PubMed  Google Scholar 

  24. Miners, J. S. et al. Angiotensin-converting enzyme (ACE) levels and activity in Alzheimer's disease, and relationship of perivascular ACE-1 to cerebral amyloid angiopathy. Neuropathol. Appl. Neurobiol. 34, 181–193 (2008).

    CAS  PubMed  Google Scholar 

  25. Papassotiropoulos, A. et al. Genes involved in brain cholesterol metabolism are associated with the risk for Alzheimer's disease and with disease related traits. Neurobiol. Aging 23, S268 (2002).

    Google Scholar 

  26. Papassotiropoulos, A. et al. Cholesterol 25-hydroxylase on chromosome 10q is a susceptibility gene for sporadic Alzheimer's disease. Neurodegener. Dis. 2, 233–241 (2005).

    CAS  PubMed  Google Scholar 

  27. Zerbinatti, C. V. et al. Oxysterol-binding protein-1 (OSBP1) modulates processing and trafficking of the amyloid precursor protein. Mol. Neurodegener 3, 5 (2008).

    PubMed  PubMed Central  Google Scholar 

  28. Puglielli, L., Tanzi, R. E. & Kovacs, D. M. Alzheimer's disease: the cholesterol connection. Nature Neurosci. 6, 345–351 (2003).

    CAS  PubMed  Google Scholar 

  29. Kalamida, D. et al. Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J. 274, 3799–3845 (2007).

    CAS  PubMed  Google Scholar 

  30. Kawamata, J. & Shimohama, S. Association of novel and established polymorphisms in neuronal nicotinic acetylcholine receptors with sporadic Alzheimer's disease. J. Alzheimers Dis. 4, 71–76 (2002).

    CAS  PubMed  Google Scholar 

  31. Cook, L. J. et al. Candidate gene association studies of the α4 (CHRNA4) and β2 (CHRNB2) neuronal nicotinic acetylcholine receptor subunit genes in Alzheimer's disease. Neurosci. Lett. 358, 142–146 (2004).

    CAS  PubMed  Google Scholar 

  32. Oddo, S. & LaFerla, F. M. The role of nicotinic acetylcholine receptors in Alzheimer's disease. J. Physiol. (Paris) 99, 172–179 (2006).

    CAS  Google Scholar 

  33. Tohgi, H., Utsugisawa, K., Yoshimura, M., Nagane, Y. & Mihara, M. Age-related changes in nicotinic acetylcholine receptor subunits α4 and β2 messenger RNA expression in postmortem human frontal cortex and hippocampus. Neurosci. Lett. 245, 139–142 (1998).

    CAS  PubMed  Google Scholar 

  34. Zoli, M., Picciotto, M. R., Ferrari, R., Cocchi, D. & Changeux, J. P. Increased neurodegeneration during ageing in mice lacking high-affinity nicotine receptors. EMBO J. 18, 1235–1244 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu, J. et al. β-Amyloid directly inhibits human α4β2-nicotinic acetylcholine receptors heterologously expressed in human SH-EP1 cells. J. Biol. Chem. 279, 37842–37851 (2004).

    CAS  PubMed  Google Scholar 

  36. Oddo, S. et al. Chronic nicotine administration exacerbates tau pathology in a transgenic model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 102, 3046–3051 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. De Fusco, M. et al. The nicotinic receptor β2 subunit is mutant in nocturnal frontal lobe epilepsy. Nature Genet. 26, 275–276 (2000).

    CAS  PubMed  Google Scholar 

  38. Marini, C. & Guerrini, R. The role of the nicotinic acetylcholine receptors in sleep-related epilepsy. Biochem. Pharmacol. 74, 1308–1314 (2007).

    CAS  PubMed  Google Scholar 

  39. Palm, D. E., Knuckey, N. W., Primiano, M. J., Spangenberger, A. G. & Johanson, C. E. Cystatin C, a protease inhibitor, in degenerating rat hippocampal neurons following transient forebrain ischemia. Brain Res. 691, 1–8 (1995).

    CAS  PubMed  Google Scholar 

  40. Yasuhara, O. et al. Expression of cystatin C in rat, monkey and human brains. Brain Res. 628, 85–92 (1993).

    CAS  PubMed  Google Scholar 

  41. Balbin, M. & Abrahamson, M. SstII polymorphic sites in the promoter region of the human cystatin C gene. Hum. Genet. 87, 751–752 (1991).

    CAS  PubMed  Google Scholar 

  42. Benussi, L. et al. Alzheimer disease-associated cystatin C variant undergoes impaired secretion. Neurobiol. Dis. 13, 15–21 (2003).

    CAS  PubMed  Google Scholar 

  43. Paraoan, L. et al. Unexpected intracellular localization of the AMD-associated cystatin C variant. Traffic 5, 884–895 (2004).

    CAS  PubMed  Google Scholar 

  44. Vinters, H. V., Nishimura, G. S., Secor, D. L. & Pardridge, W. M. Immunoreactive A4 and gamma-trace peptide colocalization in amyloidotic arteriolar lesions in brains of patients with Alzheimer's disease. Am. J. Pathol. 137, 233–240 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sastre, M. et al. Binding of cystatin C to Alzheimer's amyloid β inhibits in vitro amyloid fibril formation. Neurobiol. Aging 25, 1033–1043 (2004).

    CAS  PubMed  Google Scholar 

  46. Kaeser, S. A. et al. Cystatin C modulates cerebral β-amyloidosis. Nature Genet. 39, 1437–1439 (2007). This study applied a range of in vitro and in vivo experiments to elucidate the potential functional role of CST3 in animal models. We highlight it not for the specific results, but for the experimental approach.

    CAS  PubMed  Google Scholar 

  47. Nagai, A. et al. Neuronal cell death induced by cystatin C in vivo and in cultured human CNS neurons is inhibited with cathepsin B. Brain Res. 1066, 120–128 (2005).

    CAS  PubMed  Google Scholar 

  48. Levy, E., Jaskolski, M. & Grubb, A. The role of cystatin C in cerebral amyloid angiopathy and stroke: cell biology and animal models. Brain Pathol. 16, 60–70 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, Y. & Rohrschneider, L. R. The gift of Gab. FEBS Lett. 515, 1–7 (2002).

    CAS  PubMed  Google Scholar 

  50. Sarmay, G., Angyal, A., Kertesz, A., Maus, M. & Medgyesi, D. The multiple function of Grb2 associated binder (Gab) adaptor/scaffolding protein in immune cell signaling. Immunol. Lett. 104, 76–82 (2006).

    CAS  PubMed  Google Scholar 

  51. Chapuis, J. et al. Association study of the GAB2 gene with the risk of developing Alzheimer's disease. Neurobiol. Dis. 30, 103–106 (2008).

    CAS  PubMed  Google Scholar 

  52. Reynolds, C. H. et al. Phosphorylation regulates tau interactions with SH3 domains of phosphatidylinositol-3-kinase, phospholipase cγ1, GRB2 and SRC-family kinases. J. Biol. Chem. 8 May 2008 (doi:10.1074/jbc.M709715200).

    CAS  Google Scholar 

  53. Nizzari, M. et al. Amyloid precursor protein and presenilin1 interact with the adaptor GRB2 and modulate ERK 1,2 signaling. J. Biol. Chem. 282, 13833–13844 (2007).

    CAS  PubMed  Google Scholar 

  54. Rankin, J. & Ellard, S. The laminopathies: a clinical review. Clin. Genet. 70, 261–274 (2006).

    CAS  PubMed  Google Scholar 

  55. Duesing, K. et al. Evaluating the association of common LMNA variants with type 2 diabetes and quantitative metabolic phenotypes in French Europids. Diabetologia 51, 76–81 (2008).

    CAS  PubMed  Google Scholar 

  56. Capell, B. C. & Collins, F. S. Human laminopathies: nuclei gone genetically awry. Nature Rev. Genet. 7, 940–952 (2006).

    CAS  PubMed  Google Scholar 

  57. Maraganore, D. M. et al. High-resolution whole-genome association study of Parkinson disease. Am. J. Hum. Genet. 77, 685–693 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bertram, L. et al. Family-based association between Alzheimer's disease and variants in UBQLN1. N. Engl. J. Med. 352, 884–894 (2005).

    CAS  PubMed  Google Scholar 

  59. Mackenzie, I. R. & Rademakers, R. The molecular genetics and neuropathology of frontotemporal lobar degeneration: recent developments. Neurogenetics 8, 237–248 (2007).

    CAS  PubMed  Google Scholar 

  60. Ballatore, C., Lee, V. M. & Trojanowski, J. Q. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nature Rev. Neurosci. 8, 663–672 (2007). This is an excellent review on tau function and dysfunction in AD and in other neurodegenerative diseases.

    CAS  Google Scholar 

  61. Hinds, D. A. et al. Whole-genome patterns of common DNA variation in three human populations. Science 307, 1072–1079 (2005).

    CAS  PubMed  Google Scholar 

  62. Stefansson, H. et al. A common inversion under selection in Europeans. Nature Genet. 37, 129–137 (2005).

    CAS  PubMed  Google Scholar 

  63. Pittman, A. M., Fung, H. C. & de Silva, R. Untangling the tau gene association with neurodegenerative disorders. Hum. Mol. Genet. 15 Spec. No. 2, R188–R195 (2006).

    Google Scholar 

  64. Myers, A. J. et al. The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts. Neurobiol. Dis. 25, 561–570 (2007).

    CAS  PubMed  Google Scholar 

  65. Rademakers, R. et al. High-density SNP haplotyping suggests altered regulation of tau gene expression in progressive supranuclear palsy. Hum. Mol. Genet. 14, 3281–3292 (2005).

    CAS  PubMed  Google Scholar 

  66. Kwok, J. B. et al. Tau haplotypes regulate transcription and are associated with Parkinson's disease. Ann. Neurol. 55, 329–334 (2004).

    CAS  PubMed  Google Scholar 

  67. Kauwe, J. S. et al. Variation in MAPT is associated with cerebrospinal fluid tau levels in the presence of amyloid-β deposition. Proc. Natl Acad. Sci. USA 105, 8050–8054 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gambetti, P., Kong, Q., Zou, W., Parchi, P. & Chen, S. G. Sporadic and familial CJD: classification and characterisation. Br. Med. Bull. 66, 213–239 (2003).

    CAS  PubMed  Google Scholar 

  69. Palmer, M. S., Dryden, A. J., Hughes, J. T. & Collinge, J. Homozygous prion protein genotype predisposes to sporadic Creutzfeldt–Jakob disease. Nature 352, 340–342 (1991).

    CAS  PubMed  Google Scholar 

  70. Schwarze-Eicker, K. et al. Prion protein (PrPc) promotes β-amyloid plaque formation. Neurobiol. Aging 26, 1177–1182 (2005).

    CAS  PubMed  Google Scholar 

  71. Lewis, P. A. et al. Codon 129 polymorphism of the human prion protein influences the kinetics of amyloid formation. J. Gen. Virol. 87, 2443–2449 (2006).

    CAS  PubMed  Google Scholar 

  72. Baskakov, I. et al. The presence of valine at residue 129 in human prion protein accelerates amyloid formation. FEBS Lett. 579, 2589–2596 (2005).

    CAS  PubMed  Google Scholar 

  73. Yamazaki, H. et al. Elements of neural adhesion molecules and a yeast vacuolar protein sorting receptor are present in a novel mammalian low density lipoprotein receptor family member. J. Biol. Chem. 271, 24761–24768 (1996).

    CAS  PubMed  Google Scholar 

  74. Taira, K. et al. LR11, a mosaic LDL receptor family member, mediates the uptake of ApoE-rich lipoproteins in vitro. Arterioscler. Thromb. Vasc. Biol. 21, 1501–1506 (2001).

    CAS  PubMed  Google Scholar 

  75. Andersen, O. M. et al. Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc. Natl Acad. Sci. USA 102, 13461–13466 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Andersen, O. M. et al. Molecular dissection of the interaction between amyloid precursor protein and its neuronal trafficking receptor SorLA/LR11. Biochemistry 45, 2618–2628 (2006).

    CAS  PubMed  Google Scholar 

  77. Rogaeva, E. et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nature Genet. 39, 168–177 (2007).

    CAS  PubMed  Google Scholar 

  78. Offe, K. et al. The lipoprotein receptor LR11 regulates amyloid β production and amyloid precursor protein traffic in endosomal compartments. J. Neurosci. 26, 1596–1603 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Scherzer, C. R. et al. Loss of apolipoprotein E receptor LR11 in Alzheimer disease. Arch. Neurol. 61, 1200–1205 (2004).

    PubMed  Google Scholar 

  80. Sager, K. L. et al. Neuronal LR11/sorLA expression is reduced in mild cognitive impairment. Ann. Neurol. 62, 640–647 (2007).

    PubMed  PubMed Central  Google Scholar 

  81. Brewer, G. J. Iron and copper toxicity in diseases of aging, particularly atherosclerosis and Alzheimer's disease. Exp. Biol. Med. (Maywood) 232, 323–335 (2007).

    CAS  Google Scholar 

  82. Loeffler, D. A. et al. Transferrin and iron in normal, Alzheimer's disease, and Parkinson's disease brain regions. J. Neurochem. 65, 710–724 (1995).

    CAS  PubMed  Google Scholar 

  83. Smith, M. A., Harris, P. L., Sayre, L. M. & Perry, G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl Acad. Sci. USA 94, 9866–9868 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yamamoto, A. et al. Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer's disease. J. Neurochem. 82, 1137–1147 (2002).

    CAS  PubMed  Google Scholar 

  85. Huang, X., Moir, R. D., Tanzi, R. E., Bush, A. I. & Rogers, J. T. Redox-active metals, oxidative stress, and Alzheimer's disease pathology. Ann. NY Acad. Sci. 1012, 153–163 (2004).

    CAS  PubMed  Google Scholar 

  86. Lee, P. L., Ho, N. J., Olson, R. & Beutler, E. The effect of transferrin polymorphisms on iron metabolism. Blood Cells Mol. Dis. 25, 374–379 (1999).

    CAS  PubMed  Google Scholar 

  87. Zatta, P. et al. The C2 variant of human serum transferrin retains the iron binding properties of the native protein. Biochim. Biophys. Acta 1741, 264–270 (2005).

    CAS  PubMed  Google Scholar 

  88. Robson, K. J. et al. Synergy between the C2 allele of transferrin and the C282Y allele of the haemochromatosis gene (HFE) as risk factors for developing Alzheimer's disease. J. Med. Genet. 41, 261–265 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Raiha, I., Kaprio, J., Koskenvuo, M., Rajala, T. & Sourander, L. Alzheimer's disease in finnish twins. Lancet 347, 573–578 (1996).

    CAS  PubMed  Google Scholar 

  90. Meyer, J. M. & Breitner, J. C. Multiple threshold model for the onset of Alzheimer's disease in the NAS-NRC twin panel. Am. J. Med. Genet. 81, 92–97 (1998).

    CAS  PubMed  Google Scholar 

  91. Pedersen, N. L., Posner, S. F. & Gatz, M. Multiple-threshold models for genetic influences on age of onset for Alzheimer disease: findings from Swedish twins. Am. J. Med. Genet. 105, 724–728 (2001).

    CAS  PubMed  Google Scholar 

  92. Lahiri, D. K., Maloney, B., Basha, M. R., Ge, Y. W. & Zawia, N. H. How and when environmental agents and dietary factors affect the course of Alzheimer's disease. Curr. Alzheimer Res. 4, 219–228 (2007).

    CAS  PubMed  Google Scholar 

  93. McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Rev. Genet. 9, 356–369 (2008). This is a state-of-the-art review of the current status of genome-wide association studies and their implications for complex diseases.

    CAS  PubMed  Google Scholar 

  94. Hoggart, C. J., Clark, T. G., De Iorio, M., Whittaker, J. C. & Balding, D. J. Genome-wide significance for dense SNP and resequencing data. Genet. Epidemiol. 32, 179–185 (2008).

    PubMed  Google Scholar 

  95. DerSimonian, R. & Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 7, 177–188 (1986).

    CAS  PubMed  Google Scholar 

  96. Ioannidis, J. P. et al. Assessment of cumulative evidence on genetic associations: interim guidelines. Int. J. Epidemiol. 37, 120–132 (2008).

    PubMed  Google Scholar 

  97. Xu, H. et al. Estrogen reduces neuronal generation of Alzheimer β-amyloid peptides. Nature Med. 4, 447–451 (1998).

    CAS  PubMed  Google Scholar 

  98. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    CAS  PubMed  Google Scholar 

  99. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754–760 (1995).

    CAS  PubMed  Google Scholar 

  100. Rogaev, E. I. et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376, 775–778 (1995).

    CAS  PubMed  Google Scholar 

  101. Levy-Lahad, E. et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269, 973–977 (1995).

    CAS  PubMed  Google Scholar 

  102. Bertram, L. & Tanzi, R. E. Of replications and refutations: the status of Alzheimer's disease genetic research. Curr. Neurol. Neurosci. Rep. 1, 442–450 (2001).

    CAS  PubMed  Google Scholar 

  103. Kehoe, P. G. et al. Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease. Nature Genet. 21, 71–72 (1999).

    CAS  PubMed  Google Scholar 

  104. Crawford, F. C. et al. A polymorphism in the cystatin C gene is a novel risk factor for late-onset Alzheimer's disease. Neurology 55, 763–768 (2000).

    CAS  PubMed  Google Scholar 

  105. Finckh, U. et al. Genetic association of a cystatin C gene polymorphism with late-onset Alzheimer disease. Arch. Neurol. 57, 1579–1583 (2000).

    CAS  PubMed  Google Scholar 

  106. Lilius, L. et al. Tau gene polymorphisms and apolipoprotein E ε4 may interact to increase risk for Alzheimer's disease. Neurosci. Lett. 277, 29–32 (1999).

    CAS  PubMed  Google Scholar 

  107. Bullido, M. J. et al. A polymorphism in the tau gene associated with risk for Alzheimer's disease. Neurosci. Lett. 278, 49–52 (2000).

    CAS  PubMed  Google Scholar 

  108. Casadei, V. M. et al. Prion protein gene polymorphism and Alzheimer's disease: one modulatory trait of cognitive decline? J. Neurol. Neurosurg. Psychiatry 71, 279–280 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Dermaut, B. et al. PRNP Val129 homozygosity increases risk for early-onset Alzheimer's disease. Ann. Neurol. 53, 409–412 (2003).

    CAS  PubMed  Google Scholar 

  110. van Rensburg, S. J., Carstens, M. E., Potocnik, F. C., Aucamp, A. K. & Taljaard, J. J. Increased frequency of the transferrin C2 subtype in Alzheimer's disease. Neuroreport 4, 1269–1271 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was sponsored by grants from the National Institute on Aging (5R01AG23667 to L.B.) and the National Institute of Mental Health (5R37MH60009 to R.E.T.). The AlzGene database was developed in collaboration with the Alzheimer Research Forum and is funded by the Cure Alzheimer's Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Bertram.

Ethics declarations

Competing interests

Lars Bertram and Rudolph E. Tanzi

Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nature Reviews Neuroscience 9, 768–778 (2008); doi:10.1038/nrn2494

Rudolph Tanzi and Lars Bertram are both consultants to, and equity holders in, TorreyPines Therapeutics, Inc. Rudolph Tanzi is a consultant to, and an equity holder in, Prana Biotechnology, Limited. Rudolph Tanzi is a co-founder of both TorreyPines Therapeutics and Prana Biotechnology.

Supplementary information

Supplementary information S1 (table)

Thirty years of AD genetics (PDF 183 kb)

Supplementary information S2 (box)

Thirty years of AD genetics (PDF 287 kb)

Related links

Related links

DATABASES

Alzgene

1q23

1q31–42

3q22

10q23

11q14

11q24

14q24.3

17q21

17q23

20p13

20q11

21q21.3

ACE

CH25H

CHRNB2

CST3

GAB2

LMNA

MAPT

PRNP

rs13500

rs505058

rs1049296

rs1064039

rs1799990

rs1800764

rs2070045

rs2373115

rs2471738

rs4845378

SORL1

TF

FURTHER INFORMATION

AD and FTD mutation database

Alzheimer Research Forum

PDGene

SzGene

Glossary

Autosomal-dominant inheritance

A type of inheritance in which the phenotype of a trait is determined completely by one of two alleles on the non-sex-chromosomes. There can be either one (heterozygous state) or two (homozygous state) copies of the dominant allele.

Senile plaque

An extracellular pathological lesion in the brains of patients with AD. Senile plaques have a core of aggregated amyloid-β protein and a periphery that consists primarily of dystrophic neurites.

Polymorphism

Genetic variation (for example, a single base change or the insertion or deletion of a piece of DNA) that occurs with at least 1% frequency in a population.

Linkage disequilibrium

(LD). The non-random association of alleles at two or more loci. In other words, when a combination of alleles at different loci occurs more (or less) frequently in a population than would be expected on the basis of the alleles' frequencies. The degree of LD can be quantified by different measures, for example r2 or D'. Both of these measures can take values ranging from 0 to 1, where 0 indicates no LD and 1 indicates strong LD.

Genetic-association study

A study that aims to determine whether a certain allele or set of alleles at polymorphic sites shows differences in distribution between samples of disease-affected and -unaffected individuals. In the simplest setting, single base changes (single-nucleotide polymorphisms (SNPs)) are assayed across unrelated cases and controls.

Odds ratio

(OR). A measure of effect size (for example, of risk effects). The OR measures the ratio of the odds of an event occurring in one group (for example, disease cases) to the odds of that same event occurring in another group (for example, healthy controls). An OR of 2 indicates that carriers of a certain risk factor are at twice the risk of developing the disease as non-carriers; an OR of 0.5 indicates that the risk in carriers is only half that in non-carriers.

Autosomal-recessive inheritance

A type of inheritance in which a certain phenotype of a trait arises only if two copies of a particular allele are present on the non sex-chromosomes (that is, the homozygous state).

Alu repeat

A dispersed, repetitive DNA sequence that is present in the human genome in 300,000 copies. It is named after the restriction endonuclease (AluI) that cleaves it.

Haplotype

Alleles located in close proximity on the same chromosome that, as a result, are inherited together. In a population, the genome is partitioned into haplotype blocks of varying length depending on the strength of the LD between the alleles, and the different combinations of alleles that are located in these blocks are called haplotype clades or haplotype alleles.

Alternative splicing

A process whereby different mRNAs can be produced from a single gene through the differential incorporation of exons into the mature transcript during splicing. Frequently, various mature proteins are generated from a single gene.

Adaptor protein

An accessory to the main signalling proteins in a signal-transduction pathway. Adaptor proteins tend to lack any intrinsic enzymatic activity themselves, but instead mediate specific protein–protein interactions that drive the formation of protein complexes.

Hardy–Weinberg equilibrium

(HWE). A principle that postulates that the genotype frequencies of a population remain constant over time. In the case of a bi-allelic polymorphism with frequencies p and q, genotype frequencies can be calculated as 1 = p^2 + 2pq + q^2. HWE can be disturbed by effects such as selection, mutations and non-random mating. In genetic-association studies, large deviations from HWE can be an indicator of genotyping error.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertram, L., Tanzi, R. Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9, 768–778 (2008). https://doi.org/10.1038/nrn2494

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2494

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing