Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis

Abstract

Molecular, genetic and pathological evidence suggests that deficits in GABAergic parvalbumin-positive interneurons contribute to schizophrenia pathophysiology through alterations in the brain's excitation–inhibition balance that result in impaired behaviour and cognition. Although the factors that trigger these deficits are diverse, there is increasing evidence that they converge on a common pathological hub that involves NMDA receptor hypofunction and oxidative stress. These factors have been separately linked to schizophrenia pathogenesis, but evidence now suggests that they are mechanistically interdependent and contribute to a common schizophrenia-associated pathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human GRIN2 mutations associated with neurodevelopmental and psychiatric disorders.
Figure 2: Key functions of the glutathione antioxidant system.
Figure 3: Reciprocal links between NMDA receptor hypofunction and oxidative stress.
Figure 4: Synaptic activity boosts the capacity of neuronal antioxidant systems.
Figure 5: The astrocytic NFE2L2 pathway boosts the brain's antioxidant defences.

Similar content being viewed by others

References

  1. Brown, A. S. The environment and susceptibility to schizophrenia. Prog. Neurobiol. 93, 23–58 (2011).

    CAS  PubMed  Google Scholar 

  2. Lewis, D. A., Curley, A. A., Glausier, J. R. & Volk, D. W. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 35, 57–67 (2012).

    CAS  PubMed  Google Scholar 

  3. Insel, T. R. Rethinking schizophrenia. Nature 468, 187–193 (2010).

    CAS  PubMed  Google Scholar 

  4. Mighdoll, M. I., Tao, R., Kleinman, J. E. & Hyde, T. M. Myelin, myelin-related disorders, and psychosis. Schizophr. Res. 161, 85–93 (2015).

    PubMed  Google Scholar 

  5. Uhlhaas, P. J. & Singer, W. Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 11, 100–113 (2010).

    CAS  PubMed  Google Scholar 

  6. Paoletti, P., Bellone, C. & Zhou, Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14, 383–400 (2013).

    CAS  PubMed  Google Scholar 

  7. Wyllie, D. J., Livesey, M. R. & Hardingham, G. E. Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology 74, 4–17 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bell, K. F. & Hardingham, G. E. The influence of synaptic activity on neuronal health. Curr. Opin. Neurobiol. 21, 299–305 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Javitt, D. C. & Zukin, S. R. Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry 148, 1301–1308 (1991).

    CAS  PubMed  Google Scholar 

  10. Coyle, J. T., Basu, A., Benneyworth, M., Balu, D. & Konopaske, G. Glutamatergic synaptic dysregulation in schizophrenia: therapeutic implications. Handb. Exp. Pharmacol. 213, 267–295 (2012).

    CAS  Google Scholar 

  11. Luby, E. D., Cohen, B. D., Rosenbaum, G., Gottlieb, J. S. & Kelley, R. Study of a new schizophrenomimetic drug; sernyl. AMA Arch. Neurol. Psychiatry 81, 363–369 (1959).

    CAS  PubMed  Google Scholar 

  12. Krystal, J. H. et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51, 199–214 (1994).

    CAS  PubMed  Google Scholar 

  13. Anis, N. A., Berry, S. C., Burton, N. R. & Lodge, D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br. J. Pharmacol. 79, 565–575 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dalmau, J. et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 7, 1091–1098 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Javitt, D. C. et al. Translating glutamate: from pathophysiology to treatment. Sci. Transl Med. 3, 102mr2 (2011).

    PubMed  PubMed Central  Google Scholar 

  16. Schwarcz, R. et al. Increased cortical kynurenate content in schizophrenia. Biol. Psychiatry 50, 521–530 (2001).

    CAS  PubMed  Google Scholar 

  17. Hashimoto, K. et al. Reduced D-serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 767–769 (2005).

    CAS  PubMed  Google Scholar 

  18. Weickert, C. S. et al. Molecular evidence of N-methyl-D-aspartate receptor hypofunction in schizophrenia. Mol. Psychiatry 18, 1185–1192 (2013).

    CAS  PubMed  Google Scholar 

  19. Pilowsky, L. S. et al. First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol. Psychiatry 11, 118–119 (2006).

    CAS  PubMed  Google Scholar 

  20. Howes, O., McCutcheon, R. & Stone, J. Glutamate and dopamine in schizophrenia: an update for the 21st century. J. Psychopharmacol. 29, 97–115 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. Group, S. W. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

    Google Scholar 

  22. Balu, D. T. & Coyle, J. T. The NMDA receptor 'glycine modulatory site' in schizophrenia: D-serine, glycine, and beyond. Curr. Opin. Pharmacol. 20, 109–115 (2015).

    CAS  PubMed  Google Scholar 

  23. Tarabeux, J. et al. Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia. Transl Psychiatry 1, e55 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Myers, R. A. et al. A population genetic approach to mapping neurological disorder genes using deep resequencing. PLoS Genet. 7, e1001318 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Carlsson, M. & Carlsson, A. The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine-depleted mice. J. Neural Transm. 75, 221–226 (1989).

    CAS  PubMed  Google Scholar 

  26. Morris, R., Anderson, E., Lynch, G. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an NMDA receptor antagonist, AP5. Nature 319, 774–776 (1986).

    CAS  PubMed  Google Scholar 

  27. Mohn, A. R., Gainetdinov, R. R., Caron, M. G. & Koller, B. H. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98, 427–436 (1999).

    CAS  PubMed  Google Scholar 

  28. Balu, D. T. et al. Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. Proc. Natl Acad. Sci. USA 110, E2400–E2409 (2013).

    CAS  PubMed  Google Scholar 

  29. Stefani, M. R. & Moghaddam, B. Transient N-methyl-D-aspartate receptor blockade in early development causes lasting cognitive deficits relevant to schizophrenia. Biol. Psychiatry 57, 433–436 (2005).

    CAS  PubMed  Google Scholar 

  30. Ikonomidou, C. et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283, 70–74 (1999).

    CAS  PubMed  Google Scholar 

  31. Wang, X., Pinto-Duarte, A., Sejnowski, T. J. & Behrens, M. M. How Nox2-containing NADPH oxidase affects cortical circuits in the NMDA receptor antagonist model of schizophrenia. Antioxid. Redox Signal. 18, 1444–1462 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Belforte, J. E. et al. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat. Neurosci. 13, 76–83 (2010).

    CAS  PubMed  Google Scholar 

  33. Korotkova, T., Fuchs, E. C., Ponomarenko, A., von Engelhardt, J. & Monyer, H. NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron 68, 557–569 (2010).

    CAS  PubMed  Google Scholar 

  34. Dringen, R., Pawlowski, P. G. & Hirrlinger, J. Peroxide detoxification by brain cells. J. Neurosci. Res. 79, 157–165 (2005).

    CAS  PubMed  Google Scholar 

  35. Hardingham, G. E. & Lipton, S. A. Regulation of neuronal oxidative and nitrosative stress by endogenous protective pathways and disease processes. Antioxid. Redox Signal. 14, 1421–1424 (2011).

    CAS  PubMed  Google Scholar 

  36. Fernandez-Fernandez, S., Almeida, A. & Bolanos, J. P. Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem. J. 443, 3–11 (2012).

    CAS  PubMed  Google Scholar 

  37. Kennedy, K. A., Sandiford, S. D., Skerjanc, I. S. & Li, S. S. Reactive oxygen species and the neuronal fate. Cell. Mol. Life Sci. 69, 215–221 (2012).

    CAS  PubMed  Google Scholar 

  38. Yao, J. K. & Keshavan, M. S. Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid. Redox Signal. 15, 2011–2035 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Do, K. Q., Cabungcal, J. H., Frank, A., Steullet, P. & Cuenod, M. Redox dysregulation, neurodevelopment, and schizophrenia. Curr. Opin. Neurobiol. 19, 220–230 (2009).

    CAS  PubMed  Google Scholar 

  40. Flatow, J., Buckley, P. & Miller, B. J. Meta-analysis of oxidative stress in schizophrenia. Biol. Psychiatry 74, 400–409 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Coughlin, J. M. et al. Marked reduction of soluble superoxide dismutase-1 (SOD1) in cerebrospinal fluid of patients with recent-onset schizophrenia. Mol. Psychiatry 18, 10–11 (2013).

    CAS  PubMed  Google Scholar 

  42. Martins-de-Souza, D., Harris, L. W., Guest, P. C. & Bahn, S. The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics. Antioxid. Redox Signal. 15, 2067–2079 (2011).

    CAS  PubMed  Google Scholar 

  43. Do, K. Q. et al. Schizophrenia: glutathione deficit in cerebro spinal fluid and prefrontal cortex in vivo. Eur. J. Neurosci. 12, 3721–3728 (2000).

    CAS  PubMed  Google Scholar 

  44. Gawryluk, J. W., Wang, J. F., Andreazza, A. C., Shao, L. & Young, L. T. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int. J. Neuropsychopharmacol. 14, 123–130 (2011).

    CAS  PubMed  Google Scholar 

  45. Matsuzawa, D. & Hashimoto, K. Magnetic resonance spectroscopy study of the antioxidant defense system in schizophrenia. Antioxid. Redox Signal. 15, 2057–2065 (2011).

    CAS  PubMed  Google Scholar 

  46. Gysin, R. et al. Impaired glutathione synthesis in schizophrenia: convergent genetic and functional evidence. Proc. Natl Acad. Sci. USA 104, 16621–16626 (2007).

    CAS  PubMed  Google Scholar 

  47. Rodriguez-Santiago, B. et al. Association of common copy number variants at the glutathione S-transferase genes and rare novel genomic changes with schizophrenia. Mol. Psychiatry 15, 1023–1033 (2010).

    CAS  PubMed  Google Scholar 

  48. Steullet, P. et al. Redox dysregulation affects the ventral but not dorsal hippocampus: impairment of parvalbumin neurons, gamma oscillations, and related behaviors. J. Neurosci. 30, 2547–2558 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kulak, A., Cuenod, M. & Do, K. Q. Behavioral phenotyping of glutathione-deficient mice: relevance to schizophrenia and bipolar disorder. Behav. Brain Res. 226, 563–570 (2012).

    CAS  PubMed  Google Scholar 

  50. Jacobsen, J. P., Rodriguiz, R. M., Mork, A. & Wetsel, W. C. Monoaminergic dysregulation in glutathione-deficient mice: possible relevance to schizophrenia? Neuroscience 132, 1055–1072 (2005).

    CAS  PubMed  Google Scholar 

  51. Cabungcal, J. H. et al. Transitory glutathione deficit during brain development induces cognitive impairment in juvenile and adult rats: relevance to schizophrenia. Neurobiol. Dis. 26, 634–645 (2007).

    CAS  PubMed  Google Scholar 

  52. Gokhale, A. et al. Quantitative proteomic and genetic analyses of the schizophrenia susceptibility factor dysbindin identify novel roles of the biogenesis of lysosome-related organelles complex 1. J. Neurosci. 32, 3697–3711 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yap, M. Y., Lo, Y. L., Talbot, K. & Ong, W. Y. Oxidative stress reduces levels of dysbindin-1A via its PEST domain. Neurochem. Int. 79, 65–69 (2014).

    CAS  PubMed  Google Scholar 

  54. Natarajan, S. K. et al. Proline dehydrogenase is essential for proline protection against hydrogen peroxide-induced cell death. Free Radic. Biol. Med. 53, 1181–1191 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Goldsmit, Y., Erlich, S. & Pinkas-Kramarski, R. Neuregulin induces sustained reactive oxygen species generation to mediate neuronal differentiation. Cell. Mol. Neurobiol. 21, 753–769 (2001).

    CAS  PubMed  Google Scholar 

  56. Filiou, M. D., Teplytska, L., Otte, D. M., Zimmer, A. & Turck, C. W. Myelination and oxidative stress alterations in the cerebellum of the G72/G30 transgenic schizophrenia mouse model. J. Psychiatr. Res. 46, 1359–1365 (2012).

    PubMed  Google Scholar 

  57. Johnson, A. W. et al. Cognitive and motivational deficits together with prefrontal oxidative stress in a mouse model for neuropsychiatric illness. Proc. Natl Acad. Sci. USA 110, 12462–12467 (2013).

    CAS  PubMed  Google Scholar 

  58. Cabungcal, J. H. et al. Juvenile antioxidant treatment prevents adult deficits in a developmental model of schizophrenia. Neuron 83, 1073–1084 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Otte, D. M. et al. N-acetyl cysteine treatment rescues cognitive deficits induced by mitochondrial dysfunction in G72/G30 transgenic mice. Neuropsychopharmacology 36, 2233–2243 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wirth, E. K. et al. Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration. FASEB J. 24, 844–852 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cabungcal, J. H., Steullet, P., Kraftsik, R., Cuenod, M. & Do, K. Q. Early-life insults impair parvalbumin interneurons via oxidative stress: reversal by N-acetylcysteine. Biol. Psychiatry 73, 574–582 (2013).

    CAS  PubMed  Google Scholar 

  62. Cabungcal, J. H. et al. Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc. Natl Acad. Sci. USA 110, 9130–9135 (2013).

    CAS  PubMed  Google Scholar 

  63. Morishita, H., Cabungcal, J. H., Chen, Y., Do, K. Q. & Hensch, T. K. Prolonged period of cortical plasticity upon redox dysregulation in fast-spiking interneurons. Biol. Psychiatry 78, 396–402 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Greenhill, S. D. et al. Adult cortical plasticity depends on an early postnatal critical period. Science 349, 424–427 (2015).

    CAS  PubMed  Google Scholar 

  65. Hikida, T. et al. Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc. Natl Acad. Sci. USA 104, 14501–14506 (2007).

    CAS  PubMed  Google Scholar 

  66. Schiavone, S. et al. Involvement of NOX2 in the development of behavioral and pathologic alterations in isolated rats. Biol. Psychiatry 66, 384–392 (2009).

    CAS  PubMed  Google Scholar 

  67. Back, S. A. & Rosenberg, P. A. Pathophysiology of glia in perinatal white matter injury. Glia 62, 1790–1815 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. Monin, A. et al. Glutathione deficit impairs myelin maturation: relevance for white matter integrity in schizophrenia patients. Mol. Psychiatry 20, 827–838 (2015).

    CAS  PubMed  Google Scholar 

  69. Lipton, S. A. et al. Cysteine regulation of protein function — as exemplified by NMDA-receptor modulation. Trends Neurosci. 25, 474–480 (2002).

    CAS  PubMed  Google Scholar 

  70. Choi, Y. B. & Lipton, S. A. Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor. Neuron 23, 171–180 (1999).

    CAS  PubMed  Google Scholar 

  71. Kohr, G., Eckardt, S., Luddens, H., Monyer, H. & Seeburg, P. H. NMDA receptor channels: subunit-specific potentiation by reducing agents. Neuron 12, 1031–1040 (1994).

    CAS  PubMed  Google Scholar 

  72. Steullet, P., Neijt, H. C., Cuenod, M. & Do, K. Q. Synaptic plasticity impairment and hypofunction of NMDA receptors induced by glutathione deficit: relevance to schizophrenia. Neuroscience 137, 807–819 (2006).

    CAS  PubMed  Google Scholar 

  73. Guidi, M., Kumar, A. & Foster, T. C. Impaired attention and synaptic senescence of the prefrontal cortex involves redox regulation of NMDA receptors. J. Neurosci. 35, 3966–3977 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bodhinathan, K., Kumar, A. & Foster, T. C. Intracellular redox state alters NMDA receptor response during aging through Ca2+/calmodulin-dependent protein kinase II. J. Neurosci. 30, 1914–1924 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Papadia, S. et al. Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat. Neurosci. 11, 476–487 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Radonjic, N. V. et al. Decreased glutathione levels and altered antioxidant defense in an animal model of schizophrenia: long-term effects of perinatal phencyclidine administration. Neuropharmacology 58, 739–745 (2010).

    CAS  PubMed  Google Scholar 

  77. Bell, K. F. & Hardingham, G. E. CNS peroxiredoxins and their regulation in health and disease. Antioxid. Redox Signal. 14, 1467–1477 (2011).

    CAS  PubMed  Google Scholar 

  78. Hardingham, G. E. & Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11, 682–696 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Baxter, P. S. et al. Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system. Nat. Commun. 6, 6761 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Jiang, Z., Rompala, G. R., Zhang, S., Cowell, R. M. & Nakazawa, K. Social isolation exacerbates schizophrenia-like phenotypes via oxidative stress in cortical interneurons. Biol. Psychiatry 73, 1024–1034 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Moghaddam, B. & Krystal, J. H. Capturing the angel in “angel dust”: twenty years of translational neuroscience studies of NMDA receptor antagonists in animals and humans. Schizophr. Bull. 38, 942–949 (2012).

    PubMed  PubMed Central  Google Scholar 

  82. Powell, S. B., Sejnowski, T. J. & Behrens, M. M. Behavioral and neurochemical consequences of cortical oxidative stress on parvalbumin-interneuron maturation in rodent models of schizophrenia. Neuropharmacology 62, 1322–1331 (2012).

    CAS  PubMed  Google Scholar 

  83. Bell, K. F. et al. Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2. Nat. Commun. 6, 7066 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gan, L. & Johnson, J. A. Oxidative damage and the Nrf2–ARE pathway in neurodegenerative diseases. Biochim. Biophys. Acta 1842, 1208–1218 (2014).

    CAS  PubMed  Google Scholar 

  85. Jimenez-Blasco, D., Santofimia-Castano, P., Gonzalez, A., Almeida, A. & Bolanos, J. P. Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5–Nrf2 pathway. Cell Death Differ. 22, 1877–1889 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bell, K. F. et al. Mild oxidative stress activates Nrf2 in astrocytes, which contributes to neuroprotective ischemic preconditioning. Proc. Natl Acad. Sci. USA 108, E1–E2; author reply E3–E4 (2011).

    CAS  PubMed  Google Scholar 

  87. Bell, K. F., Fowler, J. H., Al-Mubarak, B., Horsburgh, K. & Hardingham, G. E. Activation of Nrf2-regulated glutathione pathway genes by ischemic preconditioning. Oxid. Med. Cell Longev. 2011, 689524 (2011).

    PubMed  PubMed Central  Google Scholar 

  88. Deighton, R. F. et al. Nrf2 target genes can be controlled by neuronal activity in the absence of Nrf2 and astrocytes. Proc. Natl Acad. Sci. USA 111, E1818–E1820 (2014).

    CAS  PubMed  Google Scholar 

  89. Lewerenz, J. et al. Phosphoinositide 3-kinases upregulate system xc via eukaryotic initiation factor 2α and activating transcription factor 4 — a pathway active in glioblastomas and epilepsy. Antioxid. Redox Signal. 20, 2907–2922 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Reus, G. Z. et al. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience 300, 141–154 (2015).

    CAS  PubMed  Google Scholar 

  91. Kneeland, R. E. & Fatemi, S. H. Viral infection, inflammation and schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 42, 35–48 (2013).

    CAS  PubMed  Google Scholar 

  92. Giovanoli, S. et al. Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science 339, 1095–1099 (2013).

    CAS  PubMed  Google Scholar 

  93. Ibi, D. et al. Combined effect of neonatal immune activation and mutant DISC1 on phenotypic changes in adulthood. Behav. Brain Res. 206, 32–37 (2010).

    CAS  PubMed  Google Scholar 

  94. Beloosesky, R., Gayle, D. A. & Ross, M. G. Maternal N-acetylcysteine suppresses fetal inflammatory cytokine responses to maternal lipopolysaccharide. Am. J. Obstet. Gynecol. 195, 1053–1057 (2006).

    CAS  PubMed  Google Scholar 

  95. Lante, F. et al. Late N-acetylcysteine treatment prevents the deficits induced in the offspring of dams exposed to an immune stress during gestation. Hippocampus 18, 602–609 (2008).

    CAS  PubMed  Google Scholar 

  96. Buelna-Chontal, M. & Zazueta, C. Redox activation of Nrf2 and NF-κB: a double end sword? Cell. Signal. 25, 2548–2557 (2013).

    CAS  PubMed  Google Scholar 

  97. Jin, W. et al. Disruption of Nrf2 enhances upregulation of nuclear factor-κB activity, proinflammatory cytokines, and intercellular adhesion molecule-1 in the brain after traumatic brain injury. Mediators Inflamm. 2008, 725174 (2008).

    PubMed  Google Scholar 

  98. Pan, H., Wang, H., Wang, X., Zhu, L. & Mao, L. The absence of Nrf2 enhances NF-κB-dependent inflammation following scratch injury in mouse primary cultured astrocytes. Mediators Inflamm. 2012, 217580 (2012).

    PubMed  PubMed Central  Google Scholar 

  99. Liu, G. H., Qu, J. & Shen, X. NF-κB/p65 antagonizes Nrf2–ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim. Biophys. Acta 1783, 713–727 (2008).

    CAS  PubMed  Google Scholar 

  100. Kantrowitz, J. et al. D-serine for the treatment of negative symptoms in individuals at clinical high risk of schizophrenia: a pilot, double-blind, placebo-controlled, randomised parallel group mechanistic proof-of-concept trial. Lancet Psychiatry 2, 403–412 (2015).

    PubMed  Google Scholar 

  101. Li, Y. et al. Identity of endogenous NMDAR glycine site agonist in amygdala is determined by synaptic activity level. Nat. Commun. 4, 1760 (2013).

    PubMed  PubMed Central  Google Scholar 

  102. Lavoie, S. et al. Glutathione precursor, N-acetyl-cysteine, improves mismatch negativity in schizophrenia patients. Neuropsychopharmacology 33, 2187–2199 (2008).

    CAS  PubMed  Google Scholar 

  103. Berk, M. et al. N-acetyl cysteine as a glutathione precursor for schizophrenia — a double-blind, randomized, placebo-controlled trial. Biol. Psychiatry 64, 361–368 (2008).

    CAS  PubMed  Google Scholar 

  104. Carmeli, C., Knyazeva, M. G., Cuenod, M. & Do, K. Q. Glutathione precursor N-acetyl-cysteine modulates EEG synchronization in schizophrenia patients: a double-blind, randomized, placebo-controlled trial. PLoS ONE 7, e29341 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Farokhnia, M. et al. N-acetylcysteine as an adjunct to risperidone for treatment of negative symptoms in patients with chronic schizophrenia: a randomized, double-blind, placebo-controlled study. Clin. Neuropharmacol. 36, 185–192 (2013).

    CAS  PubMed  Google Scholar 

  106. Farr, S. A. et al. The antioxidants α-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J. Neurochem. 84, 1173–1183 (2003).

    CAS  PubMed  Google Scholar 

  107. Amminger, G. P., Schafer, M. R., Schlogelhofer, M., Klier, C. M. & McGorry, P. D. Longer-term outcome in the prevention of psychotic disorders by the Vienna omega-3 study. Nat. Commun. 6, 7934 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Shiina, A. et al. An open study of sulforaphane-rich broccoli sprout extract in patients with schizophrenia. Clin. Psychopharmacol. Neurosci. 13, 62–67 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Fox, R. J. et al. BG-12 (dimethyl fumarate): a review of mechanism of action, efficacy, and safety. Curr. Med. Res. Opin. 30, 251–262 (2014).

    CAS  PubMed  Google Scholar 

  110. Gupta, K. et al. Human embryonic stem cell derived astrocytes mediate non-cell-autonomous neuroprotection through endogenous and drug-induced mechanisms. Cell Death Differ. 19, 779–787 (2012).

    CAS  PubMed  Google Scholar 

  111. Burnashev, N. & Szepetowski, P. NMDA receptor subunit mutations in neurodevelopmental disorders. Curr. Opin. Pharmacol. 20, 73–82 (2015).

    CAS  PubMed  Google Scholar 

  112. O'Roak, B. J. et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338, 1619–1622 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lemke, J. R. et al. GRIN2B mutations in West syndrome and intellectual disability with focal epilepsy. Ann. Neurol. 75, 147–154 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Lemke, J. R. et al. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat. Genet. 45, 1067–1072 (2013).

    CAS  PubMed  Google Scholar 

  115. Freunscht, I. et al. Behavioral phenotype in five individuals with de novo mutations within the GRIN2B gene. Behav. Brain Funct. 9, 20 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Endele, S. et al. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat. Genet. 42, 1021–1026 (2010).

    CAS  PubMed  Google Scholar 

  117. Lesca, G. et al. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat. Genet. 45, 1061–1066 (2013).

    CAS  PubMed  Google Scholar 

  118. Carvill, G. L. et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat. Genet. 45, 1073–1076 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The K.Q.D. laboratory is supported by the Swiss National Science Foundation (grants # 31–116689, # 310030_135736/1, #320030_122419), the National Center of Competence in Research (NCCR) SYNAPSY (The Synaptic Bases of Mental Diseases; grant # 51AU40_125759), the Avina Foundation, the Damm-Etienne Foundation and the Alamaya Foundation (to K.Q.D.). The G.E.H. laboratory is supported by the UK Medical Research Council, the Wellcome Trust, and a Biogen Idec/University of Edinburgh Joint Discovery Research Collaboration. The authors thank K. Marwick for preparing Figure 1. The authors also thank M. Cuenod, P. Steullet, K. Marwick and D. Wyllie for their helpful comments on the article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giles E. Hardingham or Kim Q. Do.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hardingham, G., Do, K. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat Rev Neurosci 17, 125–134 (2016). https://doi.org/10.1038/nrn.2015.19

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2015.19

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing