Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy

A Corrigendum to this article was published on 13 May 2015

Key Points

  • Endocannabinoids are lipid-derived signalling molecules that are synthesized postsynaptically to activate presynaptic cannabinoid receptors 1 (CB1) receptors to influence diverse brain functions; CB1 receptors can also be activated by exogenous cannabinoids, such as the phytocannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC) or THC.

  • Although CB1 receptors are abundantly expressed in the brain, their expression is highly specific at the microscopic scale; they are present primarily at the axon terminals of specific inhibitory and excitatory neuronal subtypes.

  • Endocannabinoids inhibit neurotransmitter release on various timescales, including inhibition of tonic (baseline) release and various types of activity-dependent short- and long-term plasticity.

  • Neuronal circuits display various behavioural state-dependent network oscillations, and emerging principles of cannabinoid modulation of network rhythms have important implications for epilepsy and other neurological and psychiatric disorders that involve pathologically altered neuronal oscillations.

  • Safe and side effect-free future cannabinoid-based medications for epilepsy and related disorders will probably target cannabinoid signalling molecules with high cell type, temporal and spatial selectivity.

Abstract

Endocannabinoids are lipid-derived messengers, and both their synthesis and breakdown are under tight spatiotemporal regulation. As retrograde signalling molecules, endocannabinoids are synthesized postsynaptically but activate presynaptic cannabinoid receptor 1 (CB1) receptors to inhibit neurotransmitter release. In turn, CB1-expressing inhibitory and excitatory synapses act as strategically placed control points for activity-dependent regulation of dynamically changing normal and pathological oscillatory network activity. Here, we highlight emerging principles of cannabinoid circuit control and plasticity, and discuss their relevance for epilepsy and related comorbidities. New insights into cannabinoid signalling may facilitate the translation of the recent interest in cannabis-related substances as antiseizure medications to evidence-based treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synaptic organization of 2-arachidonoylglycerol-mediated retrograde signalling molecules in the CA1 region of the hippocampus.
Figure 2: CB1-mediated tonic and phasic inhibition.
Figure 3: Schematic illustration of molecular mechanisms for endocannabinoid-mediated synaptic plasticity.
Figure 4: Endocannabinoids, exocannabinoids, and network oscillations.
Figure 5: Bidirectional effects of cannabinoids and seizures.

Similar content being viewed by others

References

  1. Piomelli, D., Astarita, G. & Rapaka, R. A neuroscientist's guide to lipidomics. Nature Rev. Neurosci. 8, 743–754 (2007).

    Article  CAS  Google Scholar 

  2. Kano, M., Ohno-Shosaku, T., Hashimotodani, Y., Uchigashima, M. & Watanabe, M. Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 89, 309–380 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Katona, I. & Freund, T. F. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nature Med. 14, 923–930 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Heifets, B. D. & Castillo, P. E. Endocannabinoid signaling and long-term synaptic plasticity. Annu. Rev. Physiol. 71, 283–306 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mechoulam, R. & Parker, L. A. The endocannabinoid system and the brain. Annu. Rev. Psychol. 64, 21–47 (2013).

    Article  PubMed  Google Scholar 

  6. Devinsky, O. et al. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 55, 791–802 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Armstrong, C., Morgan, R. J. & Soltesz, I. Pursuing paradoxical proconvulsant prophylaxis for epileptogenesis. Epilepsia 50, 1657–1669 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Katona, I. & Freund, T. F. Multiple functions of endocannabinoid signaling in the brain. Annu. Rev. Neurosci. 35, 529–558 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hofmann, M. E. & Frazier, C. J. Marijuana, endocannabinoids, and epilepsy: potential and challenges for improved therapeutic intervention. Exp. Neurol. 244, 43–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Ohno-Shosaku, T. & Kano, M. Endocannabinoid-mediated retrograde modulation of synaptic transmission. Curr. Opin. Neurobiol. 29, 1–8 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Alger, B. E. Seizing an opportunity for the endocannabinoid system. Epilepsy Curr. 14, 272–276 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Varga, C., Golshani, P. & Soltesz, I. Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice. Proc. Natl Acad. Sci. USA 109, E2726–E2734 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ylinen, A. et al. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J. Neurosci. 15, 30–46 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Siapas, A. G. & Wilson, M. A. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21, 1123–1128 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Eschenko, O., Ramadan, W., Mölle, M., Born, J. & Sara, S. J. Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning. Learn. Mem. 15, 222–228 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bragin, A., Wilson, C. L., Almajano, J., Mody, I. & Engel, J. Jr. High-frequency oscillations after status epilepticus: epileptogenesis and seizure genesis. Epilepsia 45, 1017–1023 (2004).

    Article  PubMed  Google Scholar 

  17. Klein, T. W. et al. The cannabinoid system and immune modulation. J. Leukoc. Biol. 74, 486–496 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, S.-H., Földy, C. & Soltesz, I. Distinct endocannabinoid control of GABA release at perisomatic and dendritic synapses in the hippocampus. J. Neurosci. 30, 7993–8000 (2010). This study provides evidence of cell type-specific eCB-mediated control of GABA release at perisomatic and dendritic synapses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Katona, I. et al. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J. Neurosci. 19, 4544–4558 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Katona, I. et al. Molecular composition of the endocannabinoid system at glutamatergic synapses. J. Neurosci. 26, 5628–5637 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bezaire, M. J. & Soltesz, I. Quantitative assessment of CA1 local circuits: knowledge base for interneuron-pyramidal cell connectivity. Hippocampus 23, 751–785 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Armstrong, C. & Soltesz, I. Basket cell dichotomy in microcircuit function. J. Physiol. 590, 683–694 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Hu, H., Gan, J. & Jonas, P. Fast-spiking, parvalbumin+ GABAergic interneurons: from cellular design to microcircuit function. Science 345, 1255263 (2014).

    Article  PubMed  CAS  Google Scholar 

  24. Mackie, K. Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb. Exp. Pharmacol. 168, 299–325 (2005).

    Article  CAS  Google Scholar 

  25. Kawamura, Y. et al. The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J. Neurosci. 26, 2991–3001 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stella, N., Schweitzer, P. & Piomelli, D. A second endogenous cannabinoid that modulates long-term potentiation. Nature 388, 773–778 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Tanimura, A. et al. The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase α mediates retrograde suppression of synaptic transmission. Neuron 65, 320–327 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Gao, Y. et al. Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J. Neurosci. 30, 2017–2024 (2010). References 27 and 28 show that 2-AG, which is produced by DAGLα, mediates retrograde suppression of synaptic transmission.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Suárez, J. et al. Distribution of diacylglycerol lipase α, an endocannabinoid synthesizing enzyme, in the rat forebrain. Neuroscience 192, 112–131 (2011).

    Article  PubMed  CAS  Google Scholar 

  30. Yoshida, T. et al. Localization of diacylglycerol lipase-α around postsynaptic spine suggests close proximity between production site of an endocannabinoid, 2-arachidonoyl-glycerol, and presynaptic cannabinoid CB1 receptor. J. Neurosci. 26, 4740–4751 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hashimotodani, Y. et al. Phospholipase Cβ serves as a coincidence detector through its Ca2+ dependency for triggering retrograde endocannabinoid signal. Neuron 45, 257–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Abe, T. et al. Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J. Biol. Chem. 267, 13361–13368 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Watanabe, M. et al. Patterns of expression for the mRNA corresponding to the four isoforms of phospholipase Cβ in mouse brain. Eur. J. Neurosci. 10, 2016–2025 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Fukaya, M. et al. Predominant expression of phospholipase Cβ1 in telencephalic principal neurons and cerebellar interneurons, and its close association with related signaling molecules in somatodendritic neuronal elements. Eur. J. Neurosci. 28, 1744–1759 (2008).

    Article  PubMed  Google Scholar 

  35. Lujan, R., Nusser, Z., Roberts, J. D., Shigemoto, R. & Somogyi, P. Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur. J. Neurosci. 8, 1488–1500 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Dinh, T. P. et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl Acad. Sci. USA 99, 10819–10824 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hashimotodani, Y., Ohno-Shosaku, T. & Kano, M. Presynaptic monoacylglycerol lipase activity determines basal endocannabinoid tone and terminates retrograde endocannabinoid signaling in the hippocampus. J. Neurosci. 27, 1211–1219 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Uchigashima, M. et al. Molecular and morphological configuration for 2-arachidonoylglycerol-mediated retrograde signaling at mossy cell–granule cell synapses in the dentate gyrus. J. Neurosci. 31, 7700–7714 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gulyas, A. I. et al. Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur. J. Neurosci. 20, 441–458 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Ventura, R. & Harris, K. M. Three-dimensional relationships between hippocampal synapses and astrocytes. J. Neurosci. 19, 6897–6906 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tanimura, A. et al. Synapse type-independent degradation of the endocannabinoid 2-arachidonoylglycerol after retrograde synaptic suppression. Proc. Natl Acad. Sci. USA 109, 12195–12200 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brown, S. P., Brenowitz, S. D. & Regehr, W. G. Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nature Neurosci. 6, 1048–1057 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Losonczy, A., Biró, A. A. & Nusser, Z. Persistently active cannabinoid receptors mute a subpopulation of hippocampal interneurons. Proc. Natl Acad. Sci. USA 101, 1362–1367 (2004). This paper provides the first demonstration of CB1-dependent tonic inhibition of GABA release.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Neu, A., Földy, C. & Soltesz, I. Postsynaptic origin of CB1-dependent tonic inhibition of GABA release at cholecystokinin-positive basket cell to pyramidal cell synapses in the CA1 region of the rat hippocampus. J. Physiol. 578, 233–247 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Szabo, G. G. et al. Presynaptic calcium channel inhibition underlies CB1 cannabinoid receptor-mediated suppression of GABA release. J. Neurosci. 34, 7958–7963 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ohno-Shosaku, T., Maejima, T. & Kano, M. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29, 729–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Wilson, R. I. & Nicoll, R. A. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410, 588–592 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Kreitzer, A. C. & Regehr, W. G. Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29, 717–727 (2001). References 46–48 demonstrate for the first time that eCBs mediate retrograde signalling for the transient suppression of synaptic transmission.

    Article  CAS  PubMed  Google Scholar 

  49. Maejima, T., Hashimoto, K., Yoshida, T., Aiba, A. & Kano, M. Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron 31, 463–475 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Hashimotodani, Y. et al. Acute inhibition of diacylglycerol lipase blocks endocannabinoid-mediated retrograde signalling: evidence for on-demand biosynthesis of 2-arachidonoylglycerol. J. Physiol. 591, 4765–4776 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pitler, T. A. & Alger, B. E. Depolarization-induced suppression of GABAergic inhibition in rat hippocampal pyramidal cells: G protein involvement in a presynaptic mechanism. Neuron 13, 1447–1455 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Hoffman, A. F. & Lupica, C. R. Mechanisms of cannabinoid inhibition of GABAA synaptic transmission in the hippocampus. J. Neurosci. 20, 2470–2479 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pan, B. et al. Blockade of 2-arachidonoylglycerol hydrolysis by selective monoacylglycerol lipase inhibitor 4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184) enhances retrograde endocannabinoid signaling. J. Pharmacol. Exp. Ther. 331, 591–597 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Földy, C., Neu, A., Jones, M. V. & Soltesz, I. Presynaptic, activity-dependent modulation of cannabinoid type 1 receptor-mediated inhibition of GABA release. J. Neurosci. 26, 1465–1469 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Maejima, T. et al. Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase Cβ4 signaling cascade in the cerebellum. J. Neurosci. 25, 6826–6835 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Castillo, P. E. Presynaptic LTP and LTD of excitatory and inhibitory synapses. Cold Spring Harb. Perspect. Biol. 4, a005728 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Castillo, P. E., Younts, T. J., Chávez, A. E. & Hashimotodani, Y. Endocannabinoid signaling and synaptic function. Neuron 76, 70–81 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Buzsáki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002).

    Article  PubMed  Google Scholar 

  59. Bartos, M., Vida, I. & Jonas, P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature Rev. Neurosci. 8, 45–56 (2007).

    Article  CAS  Google Scholar 

  60. Kucewicz, M. T., Tricklebank, M. D., Bogacz, R. & Jones, M. W. Dysfunctional prefrontal cortical network activity and interactions following cannabinoid receptor activation. J. Neurosci. 31, 15560–15568 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hájos, N. et al. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur. J. Neurosci. 12, 3239–3249 (2000).

    Article  PubMed  Google Scholar 

  62. Robbe, D. et al. Cannabinoids reveal importance of spike timing coordination in hippocampal function. Nature Neurosci. 9, 1526–1533 (2006). This study shows that exocannabinoids disrupt the temporal coordination of neuronal assemblies.

    Article  CAS  PubMed  Google Scholar 

  63. Soltesz, I. & Staley, K. High times for memory: cannabis disrupts temporal coordination among hippocampal neurons. Nature Neurosci. 9, 1461–1463 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Holderith, N. et al. Cannabinoids attenuate hippocampal gamma oscillations by suppressing excitatory synaptic input onto CA3 pyramidal neurons and fast spiking basket cells. J. Physiol. 589, 4921–4934 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sales-Carbonell, C. et al. Striatal GABAergic and cortical glutamatergic neurons mediate contrasting effects of cannabinoids on cortical network synchrony. Proc. Natl Acad. Sci. USA 110, 719–724 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Böcker, K. B. E. et al. Cannabinoid modulations of resting state EEG theta power and working memory are correlated in humans. J. Cogn. Neurosci. 22, 1906–1916 (2010).

    Article  PubMed  Google Scholar 

  67. Edwards, C. R., Skosnik, P. D., Steinmetz, A. B., O'Donnell, B. F. & Hetrick, W. P. Sensory gating impairments in heavy cannabis users are associated with altered neural oscillations. Behav. Neurosci. 123, 894–904 (2009); erratum 123, 1065 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Raver, S. M., Haughwout, S. P. & Keller, A. Adolescent cannabinoid exposure permanently suppresses cortical oscillations in adult mice. Neuropsychopharmacology 38, 2338–2347 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lawrence, J. J. Cholinergic control of GABA release: emerging parallels between neocortex and hippocampus. Trends Neurosci. 31, 317–327 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Fisahn, A., Pike, F. G., Buhl, E. H. & Paulsen, O. Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394, 186–189 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Nagode, D. A., Tang, A.-H., Karson, M. A., Klugmann, M. & Alger, B. E. Optogenetic release of ACh induces rhythmic bursts of perisomatic IPSCs in hippocampus. PLoS ONE 6, e27691 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim, J., Isokawa, M., Ledent, C. & Alger, B. E. Activation of muscarinic acetylcholine receptors enhances the release of endogenous cannabinoids in the hippocampus. J. Neurosci. 22, 10182–10191 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ohno-Shosaku, T. et al. Postsynaptic M1 and M3 receptors are responsible for the muscarinic enhancement of retrograde endocannabinoid signalling in the hippocampus. Eur. J. Neurosci. 18, 109–116 (2003).

    Article  PubMed  Google Scholar 

  74. Gulyás, A. I. et al. Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus. J. Neurosci. 30, 15134–15145 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Marsicano, G. & Lutz, B. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur. J. Neurosci. 11, 4213–4225 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Freund, T. F. & Katona, I. Perisomatic inhibition. Neuron 56, 33–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Gillies, M. J. et al. A model of atropine-resistant theta oscillations in rat hippocampal area CA1. J. Physiol. 543, 779–793 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Péterfi, Z. et al. Endocannabinoid-mediated long-term depression of afferent excitatory synapses in hippocampal pyramidal cells and GABAergic interneurons. J. Neurosci. 32, 14448–14463 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Puighermanal, E. et al. Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nature Neurosci. 12, 1152–1158 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Albayram, O. et al. Role of CB1 cannabinoid receptors on GABAergic neurons in brain aging. Proc. Natl Acad. Sci. USA 108, 11256–11261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Földy, C., Malenka, R. C. & Südhof, T. C. Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling. Neuron 78, 498–509 (2013). This study demonstrates that selective alterations occur in tonic, but not in phasic, eCB signalling at hippocampal synapses in mouse models of autism.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Lovinger, D. M. & Mathur, B. N. Endocannabinoids in striatal plasticity. Parkinsonism Relat. Disord. 18, S132–S134 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Iremonger, K. J., Cusulin, J. I. W. & Bains, J. S. Changing the tune: plasticity and adaptation of retrograde signals. Trends Neurosci. 36, 471–479 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Chen, K. et al. Long-term plasticity of endocannabinoid signaling induced by developmental febrile seizures. Neuron 39, 599–611 (2003). This paper provides the first evidence for persistent cell type-specific plasticity of the cannabinoid signalling system by seizures.

    Article  CAS  PubMed  Google Scholar 

  85. Chen, K. et al. Prevention of plasticity of endocannabinoid signaling inhibits persistent limbic hyperexcitability caused by developmental seizures. J. Neurosci. 27, 46–58 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Dvorzhak, A., Semtner, M., Faber, D. S. & Grantyn, R. Tonic mGluR5/CB1-dependent suppression of inhibition as a pathophysiological hallmark in the striatum of mice carrying a mutant form of huntingtin. J. Physiol. 591, 1145–1166 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Cepeda-Prado, E. et al. R6/2 Huntington's disease mice develop early and progressive abnormal brain metabolism and seizures. J. Neurosci. 32, 6456–6467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Naydenov, A. V. et al. ABHD6 blockade exerts antiepileptic activity in PTZ-induced seizures and in spontaneous seizures in R6/2 mice. Neuron 83, 361–371 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Falenski, K. W. et al. Temporal characterization of changes in hippocampal cannabinoid CB1 receptor expression following pilocarpine-induced status epilepticus. Brain Res. 1262, 64–72 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wallace, M. J., Blair, R. E., Falenski, K. W., Martin, B. R. & DeLorenzo, R. J. The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J. Pharmacol. Exp. Ther. 307, 129–137 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Falenski, K. W., Blair, R. E., Sim-Selley, L. J., Martin, B. R. & DeLorenzo, R. J. Status epilepticus causes a long-lasting redistribution of hippocampal cannabinoid type 1 receptor expression and function in the rat pilocarpine model of acquired epilepsy. Neuroscience 146, 1232–1244 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Bhaskaran, M. D. & Smith, B. N. Cannabinoid-mediated inhibition of recurrent excitatory circuitry in the dentate gyrus in a mouse model of temporal lobe epilepsy. PLoS ONE 5, e10683 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Ludányi, A. et al. Downregulation of the CB1 cannabinoid receptor and related molecular elements of the endocannabinoid system in epileptic human hippocampus. J. Neurosci. 28, 2976–2990 (2008). This paper describes the downregulation of components of the cannabinoid signalling system at precisely defined hippocampal synapses of humans with epilepsy.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Maglóczky, Z. et al. Dynamic changes of CB1-receptor expression in hippocampi of epileptic mice and humans. Epilepsia 51 (Suppl. 3), 115–120 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Monory, K. et al. The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51, 455–466 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chang, B. S. & Lowenstein, D. H. Epilepsy. N. Engl. J. Med. 349, 1257–1266 (2003).

    Article  PubMed  Google Scholar 

  97. Goldberg, E. M. & Coulter, D. A. Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nature Rev. Neurosci. 14, 337–349 (2013).

    Article  CAS  Google Scholar 

  98. Berkovic, S. F., Mulley, J. C., Scheffer, I. E. & Petrou, S. Human epilepsies: interaction of genetic and acquired factors. Trends Neurosci. 29, 391–397 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Hansen, H. H. et al. Anandamide, but not 2-arachidonoylglycerol, accumulates during in vivo neurodegeneration. J. Neurochem. 78, 1415–1427 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Panikashvili, D. et al. An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413, 527–531 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Marsicano, G. et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302, 84–88 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Romigi, A. et al. Cerebrospinal fluid levels of the endocannabinoid anandamide are reduced in patients with untreated newly diagnosed temporal lobe epilepsy. Epilepsia 51, 768–772 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Wallace, M. J., Wiley, J. L., Martin, B. R. & DeLorenzo, R. J. Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. Eur. J. Pharmacol. 428, 51–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Wallace, M. J., Martin, B. R. & DeLorenzo, R. J. Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. Eur. J. Pharmacol. 452, 295–301 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Shafaroodi, H. et al. The interaction of cannabinoids and opioids on pentylenetetrazole-induced seizure threshold in mice. Neuropharmacology 47, 390–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Blair, R. E. et al. Activation of the cannabinoid type-1 receptor mediates the anticonvulsant properties of cannabinoids in the hippocampal neuronal culture models of acquired epilepsy and status epilepticus. J. Pharmacol. Exp. Ther. 317, 1072–1078 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Kozan, R., Ayyildiz, M. & Agar, E. The effects of intracerebroventricular AM-251, a CB1-receptor antagonist, and ACEA, a CB1-receptor agonist, on penicillin-induced epileptiform activity in rats. Epilepsia 50, 1760–1767 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Mason, R. & Cheer, J. F. Cannabinoid receptor activation reverses kainate-induced synchronized population burst fi ring in rat hippocampus. Front. Integr. Neurosci. 3, 13 (2009).

    PubMed  PubMed Central  Google Scholar 

  109. Carta, M., Fièvre, S., Gorlewicz, A. & Mulle, C. Kainate receptors in the hippocampus. Eur. J. Neurosci. 39, 1835–1844 (2014).

    Article  PubMed  Google Scholar 

  110. Lourenço, J. et al. Synaptic activation of kainate receptors gates presynaptic CB1 signaling at GABAergic synapses. Nature Neurosci. 13, 197–204 (2010).

    Article  PubMed  CAS  Google Scholar 

  111. Daw, M. I., Pelkey, K. A., Chittajallu, R. & McBain, C. J. Presynaptic kainate receptor activation preserves asynchronous GABA release despite the reduction in synchronous release from hippocampal cholecystokinin interneurons. J. Neurosci. 30, 11202–11209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Burns, H. D. et al. [18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor. Proc. Natl Acad. Sci. USA 104, 9800–9805 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Goffin, K., Van Paesschen, W. & Van Laere, K. In vivo activation of endocannabinoid system in temporal lobe epilepsy with hippocampal sclerosis. Brain 134, 1033–1040 (2011). This paper uses brain imaging methods to demonstrate dynamic changes in CB1 availability in patients with temporal lobe epilepsy.

    Article  PubMed  Google Scholar 

  114. Perucca, P. & Gilliam, F. G. Adverse effects of antiepileptic drugs. Lancet Neurol. 11, 792–802 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Krook-Magnuson, E., Armstrong, C., Oijala, M. & Soltesz, I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nature Commun. 4, 1376 (2013).

    Article  CAS  Google Scholar 

  116. Schlosburg, J. E. et al. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nature Neurosci. 13, 1113–1119 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Oviedo, A., Glowa, J. & Herkenham, M. Chronic cannabinoid administration alters cannabinoid receptor binding in rat brain: a quantitative autoradiographic study. Brain Res. 616, 293–302 (1993).

    Article  CAS  PubMed  Google Scholar 

  118. Guggenhuber, S., Monory, K., Lutz, B. & Klugmann, M. AAV vector-mediated overexpression of CB1 cannabinoid receptor in pyramidal neurons of the hippocampus protects against seizure-induced excitoxicity. PLoS ONE 5, e15707 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Stadnicki, S. W., Schaeppi, U., Rosenkrantz, H. & Braude, M. C. Δ9-tetrahydrocannabinol: subcortical spike bursts and motor manifestations in a Fischer rat treated orally for 109 days. Life Sci. 14, 463–472 (1974).

    Article  CAS  PubMed  Google Scholar 

  120. Martin, P. & Consroe, P. Cannabinoid induced behavioral convulsions in rabbits. Science 194, 965–967 (1976).

    Article  CAS  PubMed  Google Scholar 

  121. Gordon, E. & Devinsky, O. Alcohol and marijuana: effects on epilepsy and use by patients with epilepsy. Epilepsia 42, 1266–1272 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Kullmann, D. M., Schorge, S., Walker, M. C. & Wykes, R. C. Gene therapy in epilepsy — is it time for clinical trials? Nature Rev. Neurol. 10, 300–304 (2014).

    Article  CAS  Google Scholar 

  123. Katona, I. et al. GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus. Neuroscience 100, 797–804 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Eggan, S. M., Melchitzky, D. S., Sesack, S. R. & Fish, K. N. & Lewis, D. A. Relationship of cannabinoid CB1 receptor and cholecystokinin immunoreactivity in monkey dorsolateral prefrontal cortex. Neuroscience 169, 1651–1661 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Kovacs, F. E. et al. Exogenous and endogenous cannabinoids suppress inhibitory neurotransmission in the human neocortex. Neuropsychopharmacology 37, 1104–1114 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Maa, E. & Figi, P. The case for medical marijuana in epilepsy. Epilepsia 55, 783–786 (2014).

    Article  PubMed  Google Scholar 

  127. Cilio, M. R., Thiele, E. A. & Devinsky, O. The case for assessing cannabidiol in epilepsy. Epilepsia 55, 787–790 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Pitkänen, A. et al. Issues related to development of antiepileptogenic therapies. Epilepsia 54 (Suppl. 4), 35–43 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Echegoyen, J., Armstrong, C., Morgan, R. J. & Soltesz, I. Single application of a CB1 receptor antagonist rapidly following head injury prevents long-term hyperexcitability in a rat model. Epilepsy Res. 85, 123–127 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dudek, F. E., Pouliot, W. A., Rossi, C. A. & Staley, K. J. The effect of the cannabinoid-receptor antagonist, SR141716, on the early stage of kainate-induced epileptogenesis in the adult rat. Epilepsia 51 (Suppl. 3), 126–130 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. DeLong, M. R. & Wichmann, T. Circuits and circuit disorders of the basal ganglia. Arch. Neurol. 64, 20–24 (2007).

    Article  PubMed  Google Scholar 

  132. Mathur, B. N., Tanahira, C., Tamamaki, N. & Lovinger, D. M. Voltage drives diverse endocannabinoid signals to mediate striatal microcircuit-specific plasticity. Nature Neurosci. 16, 1275–1283 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Adermark, L. & Lovinger, D. M. Frequency-dependent inversion of net striatal output by endocannabinoid-dependent plasticity at different synaptic inputs. J. Neurosci. 29, 1375–1380 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Atwood, B. K., Kupferschmidt, D. A. & Lovinger, D. M. Opioids induce dissociable forms of long-term depression of excitatory inputs to the dorsal striatum. Nature Neurosci. 17, 540–548 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Fourgeaud, L. et al. A single in vivo exposure to cocaine abolishes endocannabinoid-mediated long-term depression in the nucleus accumbens. J. Neurosci. 24, 6939–6945 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hoffman, A. F., Oz, M., Caulder, T. & Lupica, C. R. Functional tolerance and blockade of long-term depression at synapses in the nucleus accumbens after chronic cannabinoid exposure. J. Neurosci. 23, 4815–4820 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mato, S. et al. A single in-vivo exposure to Δ9THC blocks endocannabinoid-mediated synaptic plasticity. Nature Neurosci. 7, 585–586 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Nazzaro, C. et al. SK channel modulation rescues striatal plasticity and control over habit in cannabinoid tolerance. Nature Neurosci. 15, 284–293 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. DePoy, L. et al. Chronic alcohol produces neuroadaptations to prime dorsal striatal learning. Proc. Natl Acad. Sci. USA 110, 14783–14788 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Xia, J. X. et al. Alterations of rat corticostriatal synaptic plasticity after chronic ethanol exposure and withdrawal. Alcohol. Clin. Exp. Res. 30, 819–824 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Adermark, L., Jonsson, S., Ericson, M. & Söderpalm, B. Intermittent ethanol consumption depresses endocannabinoid-signaling in the dorsolateral striatum of rat. Neuropharmacology 61, 1160–1165 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Bagni, C. & Greenough, W. T. From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nature Rev. Neurosci. 6, 376–387 (2005).

    Article  CAS  Google Scholar 

  143. Incorpora, G., Sorge, G., Sorge, A. & Pavone, L. Epilepsy in fragile X syndrome. Brain Dev. 24, 766–769 (2002).

    Article  PubMed  Google Scholar 

  144. Bhakar, A. L., Dölen, G. & Bear, M. F. The pathophysiology of fragile X (and what it teaches us about synapses). Annu. Rev. Neurosci. 35, 417–443 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Varma, N., Carlson, G. C., Ledent, C. & Alger, B. E. Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. J. Neurosci. 21, RC188 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhang, L. & Alger, B. E. Enhanced endocannabinoid signaling elevates neuronal excitability in fragile X syndrome. J. Neurosci. 30, 5724–5729 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Maccarrone, M. et al. Abnormal mGlu 5 receptor/endocannabinoid coupling in mice lacking FMRP and BC1 RNA. Neuropsychopharmacology 35, 1500–1509 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jung, K.-M. et al. Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome. Nature Commun. 3, 1080 (2012).

    Article  CAS  Google Scholar 

  149. Le Beau, F. E. N. & Alger, B. E. Transient suppression of GABAA-receptor-mediated IPSPs after epileptiform burst discharges in CA1 pyramidal cells. J. Neurophysiol. 79, 659–669 (1998).

    Article  CAS  Google Scholar 

  150. Younts, T. J., Chevaleyre, V. & Castillo, P. E. CA1 pyramidal cell theta-burst firing triggers endocannabinoid-mediated long-term depression at both somatic and dendritic inhibitory synapses. J. Neurosci. 33, 13743–13757 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Harris, K. D., Csicsvary, J., Hirase, H., Dragoi, G. & Buzsaki, G. Organization of cell assemblies in the hippocampus. Nature 424, 552–556 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Deshpande, L. S. et al. Cannabinoid CB1 receptor antagonists cause status epilepticus-like activity in the hippocampal neuronal culture model of acquired epilepsy. Neurosci. Lett. 411, 11–16 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. G. Malpeli for comments on the manuscript and M. Uchigashima for Figure 1c. This work was supported by a US National Institutes of Health grant (NS74432 to I.S.) and Grants-in-Aid for Scientific Research (23500466 to T.O.-S. and 25000015 to M.K.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Soltesz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Endocannabinoids

Endogenous molecules, typically with marijuana-mimetic activity, that primarily act on type 1 and 2 cannabinoid receptors.

Epilepsy

A neurological disorder characterized by a predisposition to recurrent, unprovoked seizures.

GABAergic interneurons

Locally projecting neurons that synthesize, store and release GABA as a neurotransmitter.

GABAergic cell

Synthesizes, stores and releases GABA as a neurotransmitter.

Retrograde signalling molecule

An endogenous signalling messenger molecule that is synthesized in, and released from, postsynaptic cells and acts on presynaptic sites.

Nested gamma oscillations

Short repetitive bursts of gamma waves (30–80 Hz) that often take place during (that is, nested within) the slower theta rhythm (5–10 Hz) at a particular phase of the theta oscillatory cycle.

Epileptogenesis

The process by which the brain develops epilepsy (for example, after an insult such as head trauma).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltesz, I., Alger, B., Kano, M. et al. Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy. Nat Rev Neurosci 16, 264–277 (2015). https://doi.org/10.1038/nrn3937

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3937

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing