Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spectral fingerprints of large-scale neuronal interactions

Key Points

  • Goal-directed, sensory-guided behaviour relies on both feedforward and feedback interactions between brain regions.

  • Studies of sensorimotor decision-making and top-down attention show that these large-scale interactions are reflected by the phase coherence and amplitude correlation of oscillations between brain regions.

  • Phase coherence and amplitude correlation provide insights into the large-scale neuronal interactions underlying cognition.

  • The frequencies of large-scale coherent oscillations reflect the neuronal circuit mechanisms of the canonical computations underlying cognition.

  • The frequencies of large-scale coherent oscillations may constitute indices, or 'fingerprints', of these canonical computations.

  • 'Spectral fingerprints' provide a level of description situated in between the 'processes' defined by cognitive psychology and the underlying neuronal circuit mechanisms. This level of description may help to identify commonalities and differences between cognitive processes.

Abstract

Cognition results from interactions among functionally specialized but widely distributed brain regions; however, neuroscience has so far largely focused on characterizing the function of individual brain regions and neurons therein. Here we discuss recent studies that have instead investigated the interactions between brain regions during cognitive processes by assessing correlations between neuronal oscillations in different regions of the primate cerebral cortex. These studies have opened a new window onto the large-scale circuit mechanisms underlying sensorimotor decision-making and top-down attention. We propose that frequency-specific neuronal correlations in large-scale cortical networks may be 'fingerprints' of canonical neuronal computations underlying cognitive processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase coherence and amplitude correlation of oscillations.
Figure 2: Cortical network dynamics underlying sensorimotor decisions.
Figure 3: Cortical network dynamics underlying top-down attention.
Figure 4: Large-scale spectral fingerprints of cognitive processes.

Similar content being viewed by others

References

  1. Crick, F. & Koch, C. A framework for consciousness. Nature Neurosci. 6, 119–126 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Singer, W. & Gray, C. M. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. von der Malsburg, C. The correlation theory of brain function. in Internal Report 81-2 (Max-Planck-Institute for Biophysical Chemistry, 1981).

    Google Scholar 

  4. Eckhorn, R. et al. Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol. Cybern. 60, 121–130 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Engel, A. K., Kreiter, A. K., König, P. & Singer, W. Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. Proc. Natl Acad. Sci. USA 88, 6048–6052 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gray, C. M., König, P., Engel, A. K. & Singer, W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Engel, A. K., König, P. & Singer, W. Direct physiological evidence for scene segmentation by temporal coding. Proc. Natl Acad. Sci. USA 88, 9136–9140 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kreiter, A. K. & Singer, W. Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey. J. Neurosci. 16, 2381–2396 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Castelo-Branco, M., Goebel, R., Neuenschwander, S. & Singer, W. Neural synchrony correlates with surface segregation rules. Nature 405, 685–689 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Lamme, V. A. & Spekreijse, H. Neuronal synchrony does not represent texture segregation. Nature 396, 362–366 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Palanca, B. J. & DeAngelis, G. C. Does neuronal synchrony underlie visual feature grouping? Neuron 46, 333–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Thiele, A. & Stoner, G. Neuronal synchrony does not correlate with motion coherence in cortical area MT. Nature 421, 366–370 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Varela, F., Lachaux, J. P., Rodriguez, E. & Martinerie, J. The brainweb: phase synchronization and large-scale integration. Nature Rev. Neurosci. 2, 229–239 (2001).

    Article  CAS  Google Scholar 

  14. Engel, A. K., Fries, P. & Singer, W. Dynamic predictions: oscillations and synchrony in top-down processing. Nature Rev. Neurosci. 2, 704–716 (2001).

    Article  CAS  Google Scholar 

  15. Salinas, E. & Sejnowski, T. J. Correlated neuronal activity and the flow of neural information. Nature Rev. Neurosci. 2, 539–550 (2001).

    Article  CAS  Google Scholar 

  16. Driver, J. & Noesselt, T. Multisensory interplay reveals crossmodal influences on 'sensory-specific' brain regions, neural responses, and judgments. Neuron 57, 11–23 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ghazanfar, A. A. & Schroeder, C. E. Is neocortex essentially multisensory? Trends Cogn. Sci. 10, 278–285 (2006).

    Article  PubMed  Google Scholar 

  18. Schroeder, C. E. & Foxe, J. Multisensory contributions to low-level, 'unisensory' processing. Curr. Opin. Neurobiol. 15, 454–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Senkowski, D., Schneider, T. R., Foxe, J. J. & Engel, A. K. Crossmodal binding through neural coherence: implications for multisensory processing. Trends Neurosci. 31, 401–409 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Buzsaki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Schroeder, C. E. & Lakatos, P. Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci. 32, 9–18 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Fries, P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 32, 209–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Jensen, O. & Mazaheri, A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front. Hum. Neurosci. 4, 186 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang, X. J. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195–1268 (2010).

    Article  PubMed  Google Scholar 

  25. Donner, T. H. & Siegel, M. A framework for local cortical oscillation patterns. Trends Cogn. Sci. 15, 191–199 (2011).

    Article  PubMed  Google Scholar 

  26. Friston, K. Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Annu. Rev. Neurosci. 25, 221–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).

    Article  PubMed  Google Scholar 

  28. Abeles, M. Role of the cortical neuron: integrator or coincidence detector? Isr. J. Med. Sci. 18, 83–92 (1982).

    CAS  PubMed  Google Scholar 

  29. König, P., Engel, A. K. & Singer, W. Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci. 19, 130–137 (1996).

    Article  PubMed  Google Scholar 

  30. Azouz, R. & Gray, C. M. Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proc. Natl Acad. Sci. USA 97, 8110–8115 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alonso, J. M., Usrey, W. M. & Reid, R. C. Precisely correlated firing in cells of the lateral geniculate nucleus. Nature 383, 815–819 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Bruno, R. M. & Sakmann, B. Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312, 1622–1627 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Salinas, E. & Sejnowski, T. J. Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. J. Neurosci. 20, 6193–6209 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Womelsdorf, T. et al. Modulation of neuronal interactions through neuronal synchronization. Science 316, 1609–1612 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Haider, B. & McCormick, D. A. Rapid neocortical dynamics: cellular and network mechanisms. Neuron 62, 171–189 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lakatos, P. et al. An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J. Neurophysiol. 94, 1904–1911 (2005).

    Article  PubMed  Google Scholar 

  37. Bruns, A., Eckhorn, R., Jokeit, H. & Ebner, A. Amplitude envelope correlation detects coupling among incoherent brain signals. Neuroreport 11, 1509–1514 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Leopold, D. A., Murayama, Y. & Logothetis, N. K. Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb. Cortex 13, 422–433 (2003).

    Article  PubMed  Google Scholar 

  39. Shmuel, A. & Leopold, D. A. Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: implications for functional connectivity at rest. Hum. Brain Mapp. 29, 751–761 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Munk, M. H., Roelfsema, P. R., König, P., Engel, A. K. & Singer, W. Role of reticular activation in the modulation of intracortical synchronization. Science 272, 271–274 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. de Lange, F. P., Jensen, O., Bauer, M. & Toni, I. Interactions between posterior gamma and frontal alpha/beta oscillations during imagined actions. Front. Hum. Neurosci. 2, 7 (2008).

    PubMed  PubMed Central  Google Scholar 

  42. Donner, T. H., Siegel, M., Fries, P. & Engel, A. K. Buildup of choice-predictive activity in human motor cortex during perceptual decision making. Curr. Biol. 19, 1581–1585 (2009). This human MEG study was the first to directly link sensory and motor processing stages during visual decision-making, strongly suggesting a temporal integration of sensory evidence into motor plans.

    Article  CAS  PubMed  Google Scholar 

  43. Mazaheri, A. et al. Functional disconnection of frontal cortex and visual cortex in attention-deficit/hyperactivity disorder. Biol. Psychiatry 67, 617–623 (2010). This human EEG study assessed amplitude correlation between local oscillatory signatures to show that reduced fronto–occipital interactions reflect attentional control deficits in children with ADHD.

    Article  PubMed  Google Scholar 

  44. Mazaheri, A., Nieuwenhuis, I. L., van Dijk, H. & Jensen, O. Prestimulus alpha and mu activity predicts failure to inhibit motor responses. Hum. Brain Mapp. 30, 1791–1800 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Glimcher, P. W. The neurobiology of visual-saccadic decision making. Annu. Rev. Neurosci. 26, 133–179 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Heekeren, H. R., Marrett, S. & Ungerleider, L. G. The neural systems that mediate human perceptual decision making. Nature Rev. Neurosci. 9, 467–479 (2008).

    Article  CAS  Google Scholar 

  48. Romo, R. & Salinas, E. Flutter discrimination: neural codes, perception, memory and decision making. Nature Rev. Neurosci. 4, 203–218 (2003).

    Article  CAS  Google Scholar 

  49. Schall, J. D. Neural basis of deciding, choosing and acting. Nature Rev. Neurosci. 2, 33–42 (2001).

    Article  CAS  Google Scholar 

  50. Siegel, M., Engel, A. K. & Donner, T. H. Cortical network dynamics of perceptual decision-making in the human brain. Front. Hum. Neurosci. 5, 21 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gold, J. I. & Shadlen, M. N. Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci. 5, 10–16 (2001).

    Article  PubMed  Google Scholar 

  52. Horwitz, G. D., Batista, A. P. & Newsome, W. T. Representation of an abstract perceptual decision in macaque superior colliculus. J. Neurophysiol. 91, 2281–2296 (2004).

    Article  PubMed  Google Scholar 

  53. Kim, J. N. & Shadlen, M. N. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nature Neurosci. 2, 176–185 (1999).

    Article  PubMed  Google Scholar 

  54. Donner, T. H., Sagi, D., Bonneh, Y. S. & Heeger, D. J. Opposite neural signatures of motion-induced blindness in human dorsal and ventral visual cortex. J. Neurosci. 28, 10298–10310 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nienborg, H. & Cumming, B. G. Decision-related activity in sensory neurons reflects more than a neuron's causal effect. Nature 459, 89–92 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ress, D. & Heeger, D. J. Neuronal correlates of perception in early visual cortex. Nature Neurosci. 6, 414–420 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nature Rev. Neurosci. 3, 201–215 (2002).

    Article  CAS  Google Scholar 

  58. Driver, J., Blankenburg, F., Bestmann, S., Vanduffel, W. & Ruff, C. C. Concurrent brain-stimulation and neuroimaging for studies of cognition. Trends Cogn. Sci. 13, 319–327 (2009).

    Article  PubMed  Google Scholar 

  59. Kastner, S. & Ungerleider, L. G. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23, 315–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Moore, T. & Armstrong, K. M. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421, 370–373 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Serences, J. T. & Yantis, S. Selective visual attention and perceptual coherence. Trends Cogn. Sci. 10, 38–45 (2006).

    Article  PubMed  Google Scholar 

  62. Zanto, T. P., Rubens, M. T., Thangavel, A. & Gazzaley, A. Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nature Neurosci. 14, 656–661 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Bressler, S. L., Coppola, R. & Nakamura, R. Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366, 153–156 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Roelfsema, P. R., Engel, A. K., König, P. & Singer, W. Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385, 157–161 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Schroeder, C. E., Wilson, D. A., Radman, T., Scharfman, H. & Lakatos, P. Dynamics of active sensing and perceptual selection. Curr. Opin. Neurobiol. 20, 172–176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Uchida, N., Kepecs, A. & Mainen, Z. F. Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision making. Nature Rev. Neurosci. 7, 485–491 (2006).

    Article  CAS  Google Scholar 

  69. Rizzolatti, G., Riggio, L., Dascola, I. & Umilta, C. Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25, 31–40 (1987).

    Article  CAS  PubMed  Google Scholar 

  70. Moore, T., Armstrong, K. M. & Fallah, M. Visuomotor origins of covert spatial attention. Neuron 40, 671–683 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Siegel, M., Donner, T. H., Oostenveld, R., Fries, P. & Engel, A. K. High-frequency activity in human visual cortex is modulated by visual motion strength. Cereb. Cortex 17, 732–741 (2007).

    Article  PubMed  Google Scholar 

  72. Donner, T. H. et al. Population activity in the human dorsal pathway predicts the accuracy of visual motion detection. J. Neurophysiol. 98, 345–359 (2007).

    Article  PubMed  Google Scholar 

  73. Siegel, M., Donner, T. H., Oostenveld, R., Fries, P. & Engel, A. K. Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron 60, 709–719 (2008). This human MEG study was the first to demonstrate that visuospatial attention modulates long-range coherence between frontal, parietal and visual cortices in a spatially selective fashion.

    Article  CAS  PubMed  Google Scholar 

  74. Usher, M. & McClelland, J. L. The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Rev. 108, 550–592 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Smith, P. L. & Ratcliff, R. Psychology and neurobiology of simple decisions. Trends Neurosci. 27, 161–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Aoki, F., Fetz, E. E., Shupe, L., Lettich, E. & Ojemann, G. A. Changes in power and coherence of brain activity in human sensorimotor cortex during performance of visuomotor tasks. Biosystems 63, 89–99 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Brovelli, A. et al. Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc. Natl Acad. Sci. USA 101, 9849–9854 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Murthy, V. N. & Fetz, E. E. Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc. Natl Acad. Sci. USA 89, 5670–5674 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, X. J. Decision making in recurrent neuronal circuits. Neuron 60, 215–234 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pfurtscheller, G. & Lopes da Silva, F. H. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Haegens, S. et al. Beta oscillations in the monkey sensorimotor network reflect somatosensory decision making. Proc. Natl Acad. Sci. USA 108, 10708–10713 (2011). This monkey electrophysiology study demonstrated decision-related modulations of beta-band oscillations across several frontal areas during a vibro-tactile discrimination task.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hernandez, A. et al. Decoding a perceptual decision process across cortex. Neuron 66, 300–314 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Pesaran, B., Nelson, M. J. & Andersen, R. A. Free choice activates a decision circuit between frontal and parietal cortex. Nature 453, 406–409 (2008). This monkey electrophysiology study was the first to link large-scale multi-area recordings to decision-making and reported enhanced frontoparietal beta-band coherence during free decisions as compared to instructed decisions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rizzolatti, G., Riggio, L. & Sheliga, B. M. in Attention and Performance (ed. Moscovitch, C. U. M.) 231–265 (MIT Press, Cambridge, Massachusetts, USA, 1994).

    Google Scholar 

  85. Gregoriou, G. G., Gotts, S. J., Zhou, H. & Desimone, R. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324, 1207–1210 (2009). This monkey electrophysiology study demonstrated spatially selective attentional modulation of coherence between frontal and visual cortices and characterized in detail the temporal dynamics and directionality of oscillatory interactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gross, J. et al. Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc. Natl Acad. Sci. USA 101, 13050–13055 (2004). This human MEG study was the first to demonstrate that frontoparietal beta-band coherence predicts performance in a demanding visual detection task.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hipp, J. F., Engel, A. K. & Siegel, M. Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron 69, 387–396 (2011). This human EEG study identified a large-scale coherent beta-band network across frontoparietal and visual cortices by using a new analysis approach that allows for imaging interacting networks across a full pair-wise cortico–cortical space.

    Article  CAS  PubMed  Google Scholar 

  88. Saalmann, Y. B., Pigarev, I. N. & Vidyasagar, T. R. Neural mechanisms of visual attention: how top-down feedback highlights relevant locations. Science 316, 1612–1615 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Buschman, T. J. & Miller, E. K. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 1860–1862 (2007). This monkey electrophysiology study was the first to directly compare bottom-up and top-down attention and demonstrated frontoparietal coherence in the gamma- and beta-band for bottom-up and top-down attention, respectively.

    Article  CAS  PubMed  Google Scholar 

  90. Lindsley, D. B. Psychological phenomena and the electroencephalogram. Electroencephalogr. Clin. Neurophysiol. 4, 443–456 (1952).

    Article  CAS  PubMed  Google Scholar 

  91. Nunn, C. M. & Osselton, J. W. The influence of the EEG alpha rhythm on the perception of visual stimuli. Psychophysiology 11, 294–303 (1974).

    Article  CAS  PubMed  Google Scholar 

  92. Busch, N. A., Dubois, J. & VanRullen, R. The phase of ongoing EEG oscillations predicts visual perception. J. Neurosci. 29, 7869–7876 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M. & Ro, T. To see or not to see: prestimulus alpha phase predicts visual awareness. J. Neurosci. 29, 2725–2732 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Worden, M. S., Foxe, J. J., Wang, N. & Simpson, G. V. Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J. Neurosci. 20, RC63 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cohen, M. X., van Gaal, S., Ridderinkhof, K. R. & Lamme, V. A. Unconscious errors enhance prefrontal-occipital oscillatory synchrony. Front. Hum. Neurosci. 3, 54 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Siegel, M., Kording, K. P. & König, P. Integrating top-down and bottom-up sensory processing by somato-dendritic interactions. J. Comput. Neurosci. 8, 161–173 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. von Stein, A., Chiang, C. & König, P. Top-down processing mediated by interareal synchronization. Proc. Natl Acad. Sci. USA 97, 14748–14753 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Buffalo, E. A., Fries, P., Landman, R., Buschman, T. J. & Desimone, R. Laminar differences in gamma and alpha coherence in the ventral stream. Proc. Natl Acad. Sci. USA 108, 11262–11267 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jones, S. R. et al. Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. J. Neurophysiol. 102, 3554–3572 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Roopun, A. K. et al. Cholinergic neuromodulation controls directed temporal communication in neocortex in vitro. Front. Neural Circuits 4, 8 (2010).

    PubMed  PubMed Central  Google Scholar 

  101. Kayser, C. & Logothetis, N. K. Directed interactions between auditory and superior temporal cortices and their role in sensory integration. Front. Integr Neurosci. 3, 7 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Maier, J. X., Chandrasekaran, C. & Ghazanfar, A. A. Integration of bimodal looming signals through neuronal coherence in the temporal lobe. Curr. Biol. 18, 963–968 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Engel, A. K. & Fries, P. Beta-band oscillations-signalling the status quo? Curr. Opin. Neurobiol. 20, 156–165 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Palva, J. M., Monto, S., Kulashekhar, S. & Palva, S. Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proc. Natl Acad. Sci. USA 107, 7580–7585 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Spitzer, B., Wacker, E. & Blankenburg, F. Oscillatory correlates of vibrotactile frequency processing in human working memory. J. Neurosci. 30, 4496–4502 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Spitzer, B. & Blankenburg, F. Stimulus-dependent EEG activity reflects internal updating of tactile working memory in humans. Proc. Natl Acad. Sci. USA 108, 8444–8449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Palva, S., Kulashekhar, S., Hamalainen, M. & Palva, J. M. Localization of cortical phase and amplitude dynamics during visual working memory encoding and retention. J. Neurosci. 31, 5013–5025 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tallon-Baudry, C., Mandon, S., Freiwald, W. A. & Kreiter, A. K. Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task. Cereb. Cortex 14, 713–720 (2004).

    Article  PubMed  Google Scholar 

  109. Siegel, M., Warden, M. R. & Miller, E. K. Phase-dependent neuronal coding of objects in short-term memory. Proc. Natl Acad. Sci. USA 106, 21341–21346 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tallon-Baudry, C., Bertrand, O. & Fischer, C. Oscillatory synchrony between human extrastriate areas during visual short-term memory maintenance. J. Neurosci. 21, RC177 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fell, J. & Axmacher, N. The role of phase synchronization in memory processes. Nature Rev. Neurosci. 12, 105–118 (2011).

    Article  CAS  Google Scholar 

  112. Roopun, A. K. et al. Period concatenation underlies interactions between gamma and beta rhythms in neocortex. Front. Cell Neurosci. 2, 1 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kopell, N., Whittington, M. A. & Kramer, M. A. Neuronal assembly dynamics in the beta1 frequency range permits short-term memory. Proc. Natl Acad. Sci. USA 108, 3779–3784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. VanRullen, R. & Koch, C. Is perception discrete or continuous? Trends Cogn. Sci. 7, 207–213 (2003).

    Article  PubMed  Google Scholar 

  115. Buschman, T. J. & Miller, E. K. Shifting the spotlight of attention: evidence for discrete computations in cognition. Front. Hum. Neurosci. 4, 194 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Luo, H. & Poeppel, D. Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron 54, 1001–1010 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bosman, C. A., Womelsdorf, T., Desimone, R. & Fries, P. A microsaccadic rhythm modulates gamma-band synchronization and behavior. J. Neurosci. 29, 9471–9480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Crochet, S. & Petersen, C. C. Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nature Neurosci. 9, 608–610 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Ganguly, K. & Kleinfeld, D. Goal-directed whisking increases phase-locking between vibrissa movement and electrical activity in primary sensory cortex in rat. Proc. Natl Acad. Sci. USA 101, 12348–12353 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kay, L. M. et al. Olfactory oscillations: the what, how and what for. Trends Neurosci. 32, 207–214 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I. & Schroeder, C. E. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320, 110–113 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Lakatos, P. et al. The leading sense: supramodal control of neurophysiological context by attention. Neuron 64, 419–430 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Buschman, T. J. & Miller, E. K. Serial, covert shifts of attention during visual search are reflected by the frontal eye fields and correlated with population oscillations. Neuron 63, 386–396 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Varela, F. J., Toro, A., John, E. R. & Schwartz, E. L. Perceptual framing and cortical alpha rhythm. Neuropsychologia 19, 675–686 (1981).

    Article  CAS  PubMed  Google Scholar 

  125. Busch, N. A. & VanRullen, R. Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proc. Natl Acad. Sci. USA 107, 16048–16053 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kopell, N., Ermentrout, G. B., Whittington, M. A. & Traub, R. D. Gamma rhythms and beta rhythms have different synchronization properties. Proc. Natl Acad. Sci. USA 97, 1867–1872 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. von Stein, A. & Sarnthein, J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int. J. Psychophysiol. 38, 301–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Miller, R. Theory of the normal waking EEG: from single neurones to waveforms in the alpha, beta and gamma frequency ranges. Int. J. Psychophysiol. 64, 18–23 (2007).

    Article  PubMed  Google Scholar 

  129. Ghazanfar, A. A., Chandrasekaran, C. & Logothetis, N. K. Interactions between the superior temporal sulcus and auditory cortex mediate dynamic face/voice integration in rhesus monkeys. J. Neurosci. 28, 4457–4469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  CAS  PubMed  Google Scholar 

  131. Barone, P., Batardiere, A., Knoblauch, K. & Kennedy, H. Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule. J. Neurosci. 20, 3263–3281 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. van Kerkoerle, T. J., Self, M., Poort, J., van der Togt, C. & Roelfsema, P. R. High frequencies flow in the feed-forward direction through the different layers of monkey primary visual cortex while low frequencies flow in the recurrent direction. Soc. Neurosci. Abstr. 270.8 (Washington, DC, 12–16 Nov 2011).

  133. Buhl, E. H., Tamas, G. & Fisahn, A. Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J. Physiol. 513, 117–126 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Maier, A., Adams, G. K., Aura, C. & Leopold, D. A. Distinct superficial and deep laminar domains of activity in the visual cortex during rest and stimulation. Front. Syst. Neurosci. 4, 31 (2010).

    PubMed  PubMed Central  Google Scholar 

  135. Roopun, A. K. et al. A beta2-frequency (20–30 Hz) oscillation in nonsynaptic networks of somatosensory cortex. Proc. Natl Acad. Sci. USA 103, 15646–15650 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bollimunta, A., Chen, Y., Schroeder, C. E. & Ding, M. Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques. J. Neurosci. 28, 9976–9988 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lopes Da Silva, F. H. & Storm Van Leeuwen, W. The cortical source of the alpha rhythm. Neurosci. Lett. 6, 237–241 (1977).

    Article  CAS  PubMed  Google Scholar 

  138. Silva, L. R., Amitai, Y. & Connors, B. W. Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science 251, 432–435 (1991).

    Article  CAS  PubMed  Google Scholar 

  139. Sun, W. & Dan, Y. Layer-specific network oscillation and spatiotemporal receptive field in the visual cortex. Proc. Natl Acad. Sci. USA 106, 17986–17991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kramer, M. A. et al. Rhythm generation through period concatenation in rat somatosensory cortex. PLoS Comput. Biol. 4, e1000169 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Atallah, B. V. & Scanziani, M. Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron 62, 566–577 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Whittington, M. A., Traub, R. D., Kopell, N., Ermentrout, B. & Buhl, E. H. Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int. J. Psychophysiol. 38, 315–336 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Whittington, M. A., Stanford, I. M., Colling, S. B., Jefferys, J. G. & Traub, R. D. Spatiotemporal patterns of gamma frequency oscillations tetanically induced in the rat hippocampal slice. J. Physiol. 502, 591–607 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bartos, M., Vida, I. & Jonas, P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature Rev. Neurosci. 8, 45–56 (2007).

    Article  CAS  Google Scholar 

  145. Cardin, J. A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hasenstaub, A. et al. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47, 423–435 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Sohal, V. S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Heeger, D. J., Simoncelli, E. P. & Movshon, J. A. Computational models of cortical visual processing. Proc. Natl Acad. Sci. USA 93, 623–627 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Shapley, R., Hawken, M. & Ringach, D. L. Dynamics of orientation selectivity in the primary visual cortex and the importance of cortical inhibition. Neuron 38, 689–699 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Louie, K., Grattan, L. E. & Glimcher, P. W. Reward value-based gain control: divisive normalization in parietal cortex. J. Neurosci. 31, 10627–10639 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Reynolds, J. H. & Heeger, D. J. The normalization model of attention. Neuron 61, 168–185 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zoccolan, D., Cox, D. D. & DiCarlo, J. J. Multiple object response normalization in monkey inferotemporal cortex. J. Neurosci. 25, 8150–8164 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ohshiro, T., Angelaki, D. E. & DeAngelis, G. C. A normalization model of multisensory integration. Nature Neurosci. 14, 775–782 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Ray, S. & Maunsell, J. H. Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron 67, 885–896 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Siegel, M. & König, P. A functional gamma-band defined by stimulus-dependent synchronization in area 18 of awake behaving cats. J. Neurosci. 23, 4251–4260 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hyman, J. M., Zilli, E. A., Paley, A. M. & Hasselmo, M. E. Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior. Hippocampus 15, 739–749 (2005).

    Article  PubMed  Google Scholar 

  157. Jones, M. W. & Wilson, M. A. Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol. 3, e402 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Poch, C., Fuentemilla, L., Barnes, G. R. & Duzel, E. Hippocampal theta-phase modulation of replay correlates with configural-relational short-term memory performance. J. Neurosci. 31, 7038–7042 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Siapas, A. G., Lubenov, E. V. & Wilson, M. A. Prefrontal phase locking to hippocampal theta oscillations. Neuron 46, 141–151 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Sirota, A. et al. Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 60, 683–697 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Buzsaki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. Jensen, O. & Colgin, L. L. Cross-frequency coupling between neuronal oscillations. Trends Cogn. Sci. 11, 267–269 (2007).

    Article  PubMed  Google Scholar 

  163. Canolty, R. T. et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Saleh, M., Reimer, J., Penn, R., Ojakangas, C. L. & Hatsopoulos, N. G. Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues. Neuron 65, 461–471 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cohen, M. X., Elger, C. E. & Fell, J. Oscillatory activity and phase-amplitude coupling in the human medial frontal cortex during decision making. J. Cogn. Neurosci. 21, 390–402 (2009).

    Article  PubMed  Google Scholar 

  166. Voytek, B. et al. Shifts in gamma phase-amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Front. Hum. Neurosci. 4, 191 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Handel, B. & Haarmeier, T. Cross-frequency coupling of brain oscillations indicates the success in visual motion discrimination. Neuroimage 45, 1040–1046 (2009).

    Article  PubMed  Google Scholar 

  168. Osipova, D., Hermes, D. & Jensen, O. Gamma power is phase-locked to posterior alpha activity. PLoS ONE 3, e3990 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Schack, B., Vath, N., Petsche, H., Geissler, H. G. & Moller, E. Phase-coupling of theta-gamma EEG rhythms during short-term memory processing. Int. J. Psychophysiol. 44, 143–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. Demiralp, T. et al. Gamma amplitudes are coupled to theta phase in human EEG during visual perception. Int. J. Psychophysiol. 64, 24–30 (2007).

    Article  PubMed  Google Scholar 

  171. Mormann, F. et al. Phase/amplitude reset and theta-gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus 15, 890–900 (2005).

    Article  PubMed  Google Scholar 

  172. American Psychiatric Association. Diagnostics and Statistical Manual of Mental Disorders 4th edn (American Psychiatric Press, Washington, DC, 2000).

  173. Uhlhaas, P. J. & Singer, W. Abnormal neural oscillations and synchrony in schizophrenia. Nature Rev. Neurosci. 11, 100–113 (2010).

    Article  CAS  Google Scholar 

  174. Lizio, R. et al. Electroencephalographic rhythms in Alzheimer's disease. Int. J. Alzheimers Dis. 2011, 927573 (2011).

    PubMed  PubMed Central  Google Scholar 

  175. Uhlhaas, P. J. & Singer, W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52, 155–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  176. Haenschel, C. et al. Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia. J. Neurosci. 29, 9481–9489 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Cho, R. Y., Konecky, R. O. & Carter, C. S. Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. Proc. Natl Acad. Sci. USA 103, 19878–19883 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Spencer, K. M. et al. Abnormal neural synchrony in schizophrenia. J. Neurosci. 23, 7407–7411 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lewis, D. A., Hashimoto, T. & Volk, D. W. Cortical inhibitory neurons and schizophrenia. Nature Rev. Neurosci. 6, 312–324 (2005).

    Article  CAS  Google Scholar 

  180. Vierling-Claassen, D., Siekmeier, P., Stufflebeam, S. & Kopell, N. Modeling GABA alterations in schizophrenia: a link between impaired inhibition and altered gamma and beta range auditory entrainment. J. Neurophysiol. 99, 2656–2671 (2008).

    Article  PubMed  Google Scholar 

  181. Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  182. Goard, M. & Dan, Y. Basal forebrain activation enhances cortical coding of natural scenes. Nature Neurosci. 12, 1444–1449 (2009).

    Article  CAS  PubMed  Google Scholar 

  183. Yu, A. J. & Dayan, P. Uncertainty, neuromodulation, and attention. Neuron 46, 681–692 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Sara, S. J. The locus coeruleus and noradrenergic modulation of cognition. Nature Rev. Neurosci. 10, 211–223 (2009).

    Article  CAS  Google Scholar 

  185. Rodriguez, R., Kallenbach, U., Singer, W. & Munk, M. H. Short- and long-term effects of cholinergic modulation on gamma oscillations and response synchronization in the visual cortex. J. Neurosci. 24, 10369–10378 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Saalmann, Y. B. & Kastner, S. Cognitive and perceptual functions of the visual thalamus. Neuron 71, 209–223 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bollimunta, A., Mo, J., Schroeder, C. E. & Ding, M. Neuronal mechanisms and attentional modulation of corticothalamic alpha oscillations. J. Neurosci. 31, 4935–4943 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Lorincz, M. L., Kekesi, K. A., Juhasz, G., Crunelli, V. & Hughes, S. W. Temporal framing of thalamic relay-mode firing by phasic inhibition during the alpha rhythm. Neuron 63, 683–696 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Bekisz, M. & Wrobel, A. Coupling of beta and gamma activity in corticothalamic system of cats attending to visual stimuli. Neuroreport 10, 3589–3594 (1999).

    Article  CAS  PubMed  Google Scholar 

  190. Wrobel, A. Beta activity: a carrier for visual attention. Acta Neurobiol. Exp. (Wars) 60, 247–260 (2000).

    CAS  Google Scholar 

  191. Wrobel, A., Ghazaryan, A., Bekisz, M., Bogdan, W. & Kaminski, J. Two streams of attention-dependent beta activity in the striate recipient zone of cat's lateral posterior-pulvinar complex. J. Neurosci. 27, 2230–2240 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Jones, E. G. The thalamic matrix and thalamocortical synchrony. Trends Neurosci. 24, 595–601 (2001).

    Article  CAS  PubMed  Google Scholar 

  193. Lopes da Silva, F. H., Vos, J. E., Mooibroek, J. & Van Rotterdam, A. Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis. Electroencephalogr. Clin. Neurophysiol. 50, 449–456 (1980).

    Article  CAS  PubMed  Google Scholar 

  194. Shipp, S. The functional logic of cortico-pulvinar connections. Phil. Trans. R. Soc. Lond. B 358, 1605–1624 (2003).

    Article  CAS  Google Scholar 

  195. Molotchnikoff, S. & Shumikhina, S. The lateral posterior-pulvinar complex modulation of stimulus-dependent oscillations in the cat visual cortex. Vision Res. 36, 2037–2046 (1996).

    Article  CAS  PubMed  Google Scholar 

  196. Shumikhina, S. & Molotchnikoff, S. Pulvinar participates in synchronizing neural assemblies in the visual cortex, in cats. Neurosci. Lett. 272, 135–139 (1999).

    Article  CAS  PubMed  Google Scholar 

  197. Vicente, R., Gollo, L. L., Mirasso, C. R., Fischer, I. & Pipa, G. Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. Proc. Natl Acad. Sci. USA 105, 17157–17162 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Theyel, B. B., Llano, D. A. & Sherman, S. M. The corticothalamocortical circuit drives higher-order cortex in the mouse. Nature Neurosci. 13, 84–88 (2010).

    Article  CAS  PubMed  Google Scholar 

  199. Nir, Y. et al. Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr. Biol. 17, 1275–1285 (2007).

    Article  CAS  PubMed  Google Scholar 

  200. Nir, Y. et al. Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nature Neurosci. 11, 1100–1108 (2008).

    Article  CAS  PubMed  Google Scholar 

  201. Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Rev. Neurosci. 8, 700–711 (2007).

    Article  CAS  Google Scholar 

  202. Haynes, J. D., Driver, J. & Rees, G. Visibility reflects dynamic changes of effective connectivity between V1 and fusiform cortex. Neuron 46, 811–821 (2005).

    Article  CAS  PubMed  Google Scholar 

  203. Haynes, J. D., Tregellas, J. & Rees, G. Attentional integration between anatomically distinct stimulus representations in early visual cortex. Proc. Natl Acad. Sci. USA 102, 14925–14930 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Freeman, J., Donner, T. H. & Heeger, D. J. Inter-area correlations in the ventral visual pathway reflect feature integration. J. Vis. 11 (4), 15 (2011).

    Article  PubMed  Google Scholar 

  205. Pantev, C. et al. Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroencephalogr. Clin. Neurophysiol. 94, 26–40 (1995).

    Article  CAS  PubMed  Google Scholar 

  206. Schoffelen, J. M. & Gross, J. Source connectivity analysis with MEG and EEG. Hum. Brain Mapp. 30, 1857–1865 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Nolte, G. et al. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 115, 2292–2307 (2004).

    Article  PubMed  Google Scholar 

  208. Blinn, K. A. Focal anterior temporal spikes from external rectus muscle. Electroencephalogr. Clin. Neurophysiol. 7, 299–302 (1955).

    Article  CAS  PubMed  Google Scholar 

  209. Yuval-Greenberg, S., Tomer, O., Keren, A. S., Nelken, I. & Deouell, L. Y. Transient induced gamma-band response in EEG as a manifestation of miniature saccades. Neuron 58, 429–441 (2008).

    Article  CAS  PubMed  Google Scholar 

  210. Keren, A. S., Yuval-Greenberg, S. & Deouell, L. Y. Saccadic spike potentials in gamma-band EEG: characterization, detection and suppression. NeuroImage 49, 2248–2263 (2010).

    Article  PubMed  Google Scholar 

  211. Reva, N. V. & Aftanas, L. I. The coincidence between late non-phase-locked gamma synchronization response and saccadic eye movements. Int. J. Psychophysiol. 51, 215–222 (2004).

    Article  CAS  PubMed  Google Scholar 

  212. Engbert, R. & Kliegl, R. Microsaccades uncover the orientation of covert attention. Vision Res. 43, 1035–1045 (2003).

    Article  PubMed  Google Scholar 

  213. Valsecchi, M., Betta, E. & Turatto, M. Visual oddballs induce prolonged microsaccadic inhibition. Exp. Brain Res. 177, 196–208 (2007).

    Article  PubMed  Google Scholar 

  214. Carl, C., Acik, A., König, P., Engel, A. K. & Hipp, J. F. The saccadic spike artifact in MEG. NeuroImage 59, 1657–1667 (2011).

    Article  PubMed  Google Scholar 

  215. Hughes, S. W. & Crunelli, V. Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist 11, 357–372 (2005).

    Article  PubMed  Google Scholar 

  216. Lopes da Silva, F. H., van Lierop, T. H., Schrijer, C. F. & van Leeuwen, W. S. Organization of thalamic and cortical alpha rhythms: spectra and coherences. Electroencephalogr. Clin. Neurophysiol. 35, 627–639 (1973).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. F. Hipp and C. von Nicolai for helpful discussions and comments on the manuscript. This work was supported by grants from the European Union (HEALTH-F2-2008-200728, INFSO-ICT-270212 and ERC-2010-AdG-269716 to A.K.E.) and the German Research Foundation (GRK 1247/1/2 and SFB 936/1 to A.K.E).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Markus Siegel or Tobias H. Donner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Markus Siegel's homepage

Tobias H. Donner's homepage

Andreas K. Engel's homepage

Glossary

Spectral analysis

A general term for analysis techniques (for example, Fourier transform or wavelet transform) that decompose time domain signals into their different frequency components.

Multi-microelectrode recordings

Simultaneous recordings of single- or multi-unit activity from multiple electrodes implanted in the brain.

Blood oxygen level-dependent functional MRI

(BOLD fMRI). Brain imaging technique that measures the haemodynamic response to neural activity based on changes in blood oxygenation.

Sensor level

The level of the sensors, which record neuronal mass activity (for example, electroencephalography electrodes or magnetoencephalography sensors). Each sensor-level signal constitutes a linear mixture of the signals generated by many neuronal sources.

Source reconstruction

Estimation of the sources of neuronal activity that underlie the electromagnetic signals measured at distant electroencephalography or magnetoencephalography sensors.

Effective connectivity

The influence one neuronal system exerts on another; in many studies it is measured by quantifying Granger causality.

1/f spectrum

A spectrum for which the power P is inversely proportional to frequency f: P(f) 1/fa, a>0.

Posterior parietal cortex

(PPC). An associative brain region that is centrally involved in spatial processing and controlling selective attention.

Area MT

A region in the extrastriate visual cortex of the primate brain that is centrally involved in neuronal processing and perception of visual motion.

Local field potentials

(LFPs). The low-frequency components of the extracellular voltage. The LFP mainly reflects average postsynaptic potentials surrounding the electrode tip.

Frontal eye field

(FEF). A region in the frontal cortex that controls saccadic eye movements and the focus of visuospatial attention in the primate brain.

Granger causality

A statistical measure that quantifies directed and potentially causal interactions between two simultaneous signals based on their mutual predictability.

Attentional blink

The phenomenon that a second target is often missed when presented 200–500 ms after a first target in a rapid stream of visual stimuli.

Go/no-go task

A task that requires a subject to perform a behavioural response (for example, button press) when one stimulus type appears, but to withhold a response when another stimulus type appears.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegel, M., Donner, T. & Engel, A. Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci 13, 121–134 (2012). https://doi.org/10.1038/nrn3137

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing