Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Linking lipids to Alzheimer's disease: cholesterol and beyond

An Erratum to this article was published on 23 June 2011

This article has been updated

Key Points

  • Dysregulation of lipid pathways has been implicated in a growing number of neurodegenerative disorders, including Alzheimer's disease.

  • Lipids control many aspects that are relevant for Alzheimer's disease pathogenesis: these include the trafficking and processing of amyloid precursor protein, the synaptotoxic signalling of amyloid-β and tau pathology.

  • Although the link between cholesterol metabolism and Alzheimer's disease pathogenesis is well-established, recent studies suggest that other lipid families, such as phospholipids, play a key part in Alzheimer's disease-linked synaptic dysfunction.

  • As regulators of lipid metabolism, such as statins, are successful classes of marketed drugs, identification of novel regulators of lipid pathways involved in Alzheimer's disease pathogenesis may offer new avenues for the treatment of this devastating disorder.

  • Mass spectrometry-based techniques are powerful tools to analyse the 'lipidome' of brain regions affected by Alzheimer's disease, either in humans or in genetic models. These approaches can uncover lipid pathways that are dysregulated in Alzheimer's disease, as well as novel biomarkers for this disorder.

Abstract

Lipid-mediated signalling regulates a plethora of physiological processes, including crucial aspects of brain function. In addition, dysregulation of lipid pathways has been implicated in a growing number of neurodegenerative disorders, such as Alzheimer's disease (AD). Although much attention has been given to the link between cholesterol and AD pathogenesis, growing evidence suggests that other lipids, such as phosphoinositides and phosphatidic acid, have an important role. Regulators of lipid metabolism (for example, statins) are a highly successful class of marketed drugs, and exploration of lipid dysregulation in AD and identification of novel therapeutic agents acting through relevant lipid pathways offers new and effective options for the treatment of this devastating disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Contribution of cholesterol and apolipoprotein E metabolism to biogenesis, degradation and assembly of amyloid-β peptide.
Figure 2: Modulation of proteolytic processing of amyloid precursor protein (APP) by lipids.
Figure 3: Role of lipids in Amyloid-β-induced alterations in neuronal signalling and synaptic plasticity.

Similar content being viewed by others

Change history

  • 01 April 2011

    Fig 2 and Fig 3 have been corrected on both html and pdf versions.

  • 23 June 2011

    On page 284 of this article, in the author addresses section, the e-mail address for Gilbert Di Paolo was incorrect. The correct e-mail address is: gil.dipaolo@columbia.edu

References

  1. Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nature Rev. Mol. Cell Biol. 8, 101–112 (2007).

    CAS  Google Scholar 

  2. Tanzi, R. E. & Bertram, L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120, 545–555 (2005).

    CAS  PubMed  Google Scholar 

  3. Ballatore, C., Lee, V. M. & Trojanowski, J. Q. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nature Rev. Neurosci. 8, 663–672 (2007).

    CAS  Google Scholar 

  4. Small, S. A. & Duff, K. Linking Aβ and tau in late-onset Alzheimer's disease: a dual pathway hypothesis. Neuron 60, 534–542 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Foley, P. Lipids in Alzheimer's disease: a century-old story. Biochim. Biophys. Acta 1801, 750–753 (2010). This is an interesting historical perspective highlighting how 'lipoid bodies' and more generally, lipid defects, were originally described by Alois Alzheimer and his colleagues at the beginning of the twentieth century.

    CAS  PubMed  Google Scholar 

  6. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921–923 (1993).

    CAS  PubMed  Google Scholar 

  7. Bertram, L. & Tanzi, R. E. Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nature Rev. Neurosci. 9, 768–778 (2008).

    CAS  Google Scholar 

  8. Bu, G. Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nature Rev. Neurosci. 10, 333–344 (2009).

    CAS  Google Scholar 

  9. Kim, J., Basak, J. M. & Holtzman, D. M. The role of apolipoprotein E in Alzheimer's disease. Neuron 63, 287–303 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hartmann, T., Kuchenbecker, J. & Grimm, M. O. Alzheimer's disease: the lipid connection. J. Neurochem. 103, 159–170 (2007).

    CAS  PubMed  Google Scholar 

  11. Dietschy, J. M. & Turley, S. D. Cholesterol metabolism in the brain. Curr. Opin. Lipidol. 12, 105–112 (2001).

    CAS  PubMed  Google Scholar 

  12. Mesmin, B. & Maxfield, F. R. Intracellular sterol dynamics. Biochim. Biophys. Acta 1791, 636–645 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Vance, J. E., Hayashi, H. & Karten, B. Cholesterol homeostasis in neurons and glial cells. Semin. Cell Dev. Biol. 16, 193–212 (2005).

    CAS  PubMed  Google Scholar 

  14. Chang, T. Y., Chang, C. C., Ohgami, N. & Yamauchi, Y. Cholesterol sensing, trafficking, and esterification. Annu. Rev. Cell Dev. Biol. 22, 129–157 (2006).

    CAS  PubMed  Google Scholar 

  15. Puglielli, L. et al. Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid β-peptide. Nature Cell Biol. 3, 905–912 (2001).

    CAS  PubMed  Google Scholar 

  16. Bhattacharyya, R. & Kovacs, D. M. ACAT inhibition and amyloid β reduction. Biochim. Biophys. Acta 1801, 960–965 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hutter-Paier, B. et al. The ACAT inhibitor CP-113,818 markedly reduces amyloid pathology in a mouse model of Alzheimer's disease. Neuron 44, 227–238 (2004). This study provides the first in vivo pharmacological evidence demonstrating that inhibition of ACAT reduces the amyloid burden in the brain of a mouse model of Alzheimer's disease.

    CAS  PubMed  Google Scholar 

  18. Bryleva, E. Y. et al. ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD. Proc. Natl Acad. Sci. USA 107, 3081–3086 (2010). This is a study that genetically validates the functional connection between ACAT and amyloid-β pathology in a mouse model.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hirsch-Reinshagen, V., Burgess, B. L. & Wellington, C. L. Why lipids are important for Alzheimer disease? Mol. Cell. Biochem. 326, 121–129 (2009).

    CAS  PubMed  Google Scholar 

  20. Tall, A. R. Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J. Intern. Med. 263, 256–273 (2008).

    CAS  PubMed  Google Scholar 

  21. Sun, Y., Yao, J., Kim, T. W. & Tall, A. R. Expression of liver X receptor target genes decreases cellular amyloid β peptide secretion. J. Biol. Chem. 278, 27688–27694 (2003).

    CAS  PubMed  Google Scholar 

  22. Hirsch-Reinshagen, V. et al. The absence of ABCA1 decreases soluble ApoE levels but does not diminish amyloid deposition in two murine models of Alzheimer disease. J. Biol. Chem. 280, 43243–43256 (2005).

    CAS  PubMed  Google Scholar 

  23. Koldamova, R., Staufenbiel, M. & Lefterov, I. Lack of ABCA1 considerably decreases brain ApoE level and increases amyloid deposition in APP23 mice. J. Biol. Chem. 280, 43224–43235 (2005).

    CAS  PubMed  Google Scholar 

  24. Wahrle, S. E. et al. Deletion of Abca1 increases Aβ deposition in the PDAPP transgenic mouse model of Alzheimer disease. J. Biol. Chem. 280, 43236–43242 (2005).

    CAS  PubMed  Google Scholar 

  25. Simons, M. et al. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc. Natl Acad. Sci. USA 95, 6460–6464 (1998). This is an original paper highlighting the role of cholesterol in the metabolism of APP.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Vetrivel, K. S. & Thinakaran, G. Membrane rafts in Alzheimer's disease β-amyloid production. Biochim. Biophys. Acta 1801, 860–867 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kalvodova, L. et al. Lipids as modulators of proteolytic activity of BACE: involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro. J. Biol. Chem. 280, 36815–36823 (2005). References 27, 30 and 31 collectively demonstrate the impact of lipid composition on the catalytic activity of both BACE1 and γ-secretase.

    CAS  PubMed  Google Scholar 

  28. Fassbender, K. et al. Simvastatin strongly reduces levels of Alzheimer's disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo. Proc. Natl Acad. Sci. USA 98, 5856–5861 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wahrle, S. et al. Cholesterol-dependent γ-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol. Dis. 9, 11–23 (2002).

    CAS  PubMed  Google Scholar 

  30. Osenkowski, P., Ye, W., Wang, R., Wolfe, M. S. & Selkoe, D. J. Direct and potent regulation of γ-secretase by its lipid microenvironment. J. Biol. Chem. 283, 22529–22540 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Osawa, S. et al. Phosphoinositides suppress γ-secretase in both the detergent-soluble and -insoluble states. J. Biol. Chem. 283, 19283–19292 (2008).

    CAS  PubMed  Google Scholar 

  32. Riddell, D. R., Christie, G., Hussain, I. & Dingwall, C. Compartmentalization of β-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr. Biol. 11, 1288–1293 (2001).

    CAS  PubMed  Google Scholar 

  33. Ehehalt, R., Keller, P., Haass, C., Thiele, C. & Simons, K. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 160, 113–123 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Vetrivel, K. S. et al. Alzheimer disease Aβ production in the absence of S-palmitoylation-dependent targeting of BACE1 to lipid rafts. J. Biol. Chem. 284, 3793–3803 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Benjannet, S. et al. Post-translational processing of β-secretase (β-amyloid-converting enzyme) and its ectodomain shedding. The pro- and transmembrane/cytosolic domains affect its cellular activity and amyloid-β production. J. Biol. Chem. 276, 10879–10887 (2001).

    CAS  PubMed  Google Scholar 

  36. Hattori, C. et al. BACE1 interacts with lipid raft proteins. J. Neurosci. Res. 84, 912–917 (2006).

    CAS  PubMed  Google Scholar 

  37. Marquer, C. et al. Local cholesterol increase triggers amyloid precursor protein-Bace1 clustering in lipid rafts and rapid endocytosis. FASEB J. 21 Jan 2011 (doi:10.1096/fj.10-168633).

    CAS  PubMed  Google Scholar 

  38. Yoon, I. S. et al. Low-density lipoprotein receptor-related protein promotes amyloid precursor protein trafficking to lipid rafts in the endocytic pathway. FASEB J. 21, 2742–2752 (2007).

    CAS  PubMed  Google Scholar 

  39. Schneider, A. et al. Flotillin-dependent clustering of the amyloid precursor protein regulates its endocytosis and amyloidogenic processing in neurons. J. Neurosci. 28, 2874–2882 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Urano, Y. et al. Association of active γ-secretase complex with lipid rafts. J. Lipid Res. 46, 904–912 (2005).

    CAS  PubMed  Google Scholar 

  41. Vetrivel, K. S. et al. Spatial segregation of γ-secretase and substrates in distinct membrane domains. J. Biol. Chem. 280, 25892–25900 (2005).

    CAS  PubMed  Google Scholar 

  42. Hannun, Y. A. & Obeid, L. M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nature Rev. Mol. Cell Biol. 9, 139–150 (2008).

    CAS  Google Scholar 

  43. Posse de Chaves, E. & Sipione, S. Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBS Lett. 584, 1748–1759 (2010).

    CAS  PubMed  Google Scholar 

  44. He, X., Huang, Y., Li, B., Gong, C. X. & Schuchman, E. H. Deregulation of sphingolipid metabolism in Alzheimer's disease. Neurobiol. Aging 31, 398–408 (2008).

    PubMed  PubMed Central  Google Scholar 

  45. Puglielli, L., Ellis, B. C., Saunders, A. J. & Kovacs, D. M. Ceramide stabilizes β-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid β-peptide biogenesis. J. Biol. Chem. 278, 19777–19783 (2003).

    CAS  PubMed  Google Scholar 

  46. Castro, B. M., Silva, L. C., Fedorov, A., de Almeida, R. F. & Prieto, M. Cholesterol-rich fluid membranes solubilize ceramide domains: implications for the structure and dynamics of mammalian intracellular and plasma membranes. J. Biol. Chem. 284, 22978–22987 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Grimm, M. O. et al. Regulation of cholesterol and sphingomyelin metabolism by amyloid-β and presenilin. Nature Cell Biol. 7, 1118–1123 (2005). This study provides robust evidence in support of a link between APP, presenilin and the metabolism of sterols and sphingolipids.

    CAS  PubMed  Google Scholar 

  48. Sawamura, N. et al. Modulation of amyloid precursor protein cleavage by cellular sphingolipids. J. Biol. Chem. 279, 11984–11991 (2004).

    CAS  PubMed  Google Scholar 

  49. Fantini, J., Garmy, N., Mahfoud, R. & Yahi, N. Lipid rafts: structure, function and role in HIV, Alzheimer's and prion diseases. Expert Rev. Mol. Med. 4, 1–22 (2002).

    PubMed  Google Scholar 

  50. Zhang, D., Manna, M., Wohland, T. & Kraut, R. Alternate raft pathways cooperate to mediate slow diffusion and efficient uptake of a sphingolipid tracer to degradative and recycling compartments. J. Cell Sci. 122, 3715–3728 (2009).

    CAS  PubMed  Google Scholar 

  51. Hooff, G. P., Wood, W. G., Muller, W. E. & Eckert, G. P. Isoprenoids, small GTPases and Alzheimer's disease. Biochim. Biophys. Acta 1801, 896–905 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liao, J. K. & Laufs, U. Pleiotropic effects of statins. Annu. Rev. Pharmacol. Toxicol. 45, 89–118 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cole, S. L. & Vassar, R. Isoprenoids and Alzheimer's disease: a complex relationship. Neurobiol. Dis. 22, 209–222 (2006).

    CAS  PubMed  Google Scholar 

  54. Edlund, C., Soderberg, M., Kristensson, K. & Dallner, G. Ubiquinone, dolichol, and cholesterol metabolism in aging and Alzheimer's disease. Biochem. Cell Biol. 70, 422–428 (1992).

    CAS  PubMed  Google Scholar 

  55. Eckert, G. P. et al. Regulation of the brain isoprenoids farnesyl- and geranylgeranylpyrophosphate is altered in male Alzheimer patients. Neurobiol. Dis. 35, 251–257 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou, Y. et al. Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Aβ42 by inhibiting Rho. Science 302, 1215–1217 (2003).

    CAS  PubMed  Google Scholar 

  57. Weggen, S., Rogers, M. & Eriksen, J. NSAIDs: small molecules for prevention of Alzheimer's disease or precursors for future drug development? Trends Pharmacol. Sci. 28, 536–543 (2007).

    CAS  PubMed  Google Scholar 

  58. Kukar, T. et al. Diverse compounds mimic Alzheimer disease-causing mutations by augmenting Aβ42 production. Nature Med. 11, 545–550 (2005).

    CAS  PubMed  Google Scholar 

  59. Pedrini, S. et al. Modulation of statin-activated shedding of Alzheimer APP ectodomain by ROCK. PLoS Med. 2, 69–78 (2005).

    CAS  Google Scholar 

  60. Cole, S. L. et al. Statins cause intracellular accumulation of amyloid precursor protein, β-secretase-cleaved fragments, and amyloid β-peptide via an isoprenoid-dependent mechanism. J. Biol. Chem. 280, 18755–18770 (2005). This study highlights how statins can exert cholesterol-independent effects on the metabolism of APP.

    CAS  PubMed  Google Scholar 

  61. Stokes, C. E. & Hawthorne, J. N. Reduced phosphoinositide concentrations in anterior temporal cortex of Alzheimer-diseased brains. J. Neurochem. 48, 1018–1021 (1987).

    CAS  PubMed  Google Scholar 

  62. Oliveira, T. G. & Di Paolo, G. Phospholipase D in brain function and Alzheimer's disease. Biochim. Biophys. Acta 1801, 799–905 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Petanceska, S. S. & Gandy, S. The phosphatidylinositol 3-kinase inhibitor wortmannin alters the metabolism of the Alzheimer's amyloid precursor protein. J. Neurochem. 73, 2316–2320 (1999).

    CAS  PubMed  Google Scholar 

  64. Haugabook, S. J. et al. Reduction of Aβ accumulation in the Tg2576 animal model of Alzheimer's disease after oral administration of the phosphatidyl-inositol kinase inhibitor wortmannin. FASEB J. 15, 16–18 (2001).

    CAS  PubMed  Google Scholar 

  65. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    CAS  PubMed  Google Scholar 

  66. Landman, N. et al. Presenilin mutations linked to familial Alzheimer's disease cause an imbalance in phosphatidylinositol 4,5-bisphosphate metabolism. Proc. Natl Acad. Sci. USA 103, 19524–19529 (2006). Along with reference 89, this study connects FAD-associated presenilin mutations with dysregulation of the PLC pathway and PtdIns(4,5)P 2 metabolism.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yoo, A. S. et al. Presenilin-mediated modulation of capacitative calcium entry. Neuron 27, 561–572 (2000).

    CAS  PubMed  Google Scholar 

  68. Rossner, S. New players in old amyloid precursor protein-processing pathways. Int. J. Dev. Neurosci. 22, 467–474 (2004).

    CAS  PubMed  Google Scholar 

  69. Jenkins, G. M. & Frohman, M. A. Phospholipase D: a lipid centric review. Cell. Mol. Life Sci. 62, 2305–2316 (2005).

    CAS  PubMed  Google Scholar 

  70. Dall'Armi, C. et al. The phospholipase D1 pathway modulates macroautophagy. Nature Commun. 1, 142 (2010).

    Google Scholar 

  71. Cai, D. et al. Presenilin-1 uses phospholipase D1 as a negative regulator of β-amyloid formation. Proc. Natl Acad. Sci. USA 103, 1941–1946 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cai, D. et al. Phospholipase D1 corrects impaired βAPP trafficking and neurite outgrowth in familial Alzheimer's disease-linked presenilin-1 mutant neurons. Proc. Natl Acad. Sci. USA 103, 1936–1940 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu, Y. et al. Intracellular trafficking of presenilin 1 is regulated by β-amyloid precursor protein and phospholipase D1. J. Biol. Chem. 284, 12145–12152 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ariga, T., McDonald, M. P. & Yu, R. K. Role of ganglioside metabolism in the pathogenesis of Alzheimer's disease-a review. J. Lipid Res. 49, 1157–1175 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Matsuzaki, K., Kato, K. & Yanagisawa, K. Aβ polymerization through interaction with membrane gangliosides. Biochim. Biophys. Acta (2010).

  76. Kracun, I., Kalanj, S., Cosovic, C. & Talan-Hranilovic, J. Brain gangliosides in Alzheimer's disease. J. Hirnforsch. 31, 789–793 (1990).

    CAS  PubMed  Google Scholar 

  77. Kracun, I. et al. Human brain gangliosides in development, aging and disease. Int. J. Dev. Biol. 35, 289–295 (1991).

    CAS  PubMed  Google Scholar 

  78. Yanagisawa, K. Role of gangliosides in Alzheimer's disease. Biochim. Biophys. Acta 1768, 1943–1951 (2007).

    CAS  Google Scholar 

  79. Yanagisawa, K., McLaurin, J., Michikawa, M., Chakrabartty, A. & Ihara, Y. Amyloid β-protein (Aβ) associated with lipid molecules: immunoreactivity distinct from that of soluble Aβ. FEBS Lett. 420, 43–46 (1997).

    CAS  PubMed  Google Scholar 

  80. Bernardo, A. et al. Elimination of GD3 synthase improves memory and reduces amyloid-β plaque load in transgenic mice. Neurobiol. Aging 30, 1777–1791 (2009).

    CAS  PubMed  Google Scholar 

  81. Matsuoka, Y. et al. Novel therapeutic approach for the treatment of Alzheimer's disease by peripheral administration of agents with an affinity to β-amyloid. J. Neurosci. 23, 29–33 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Salminen, A. & Kaarniranta, K. Siglec receptors and hiding plaques in Alzheimer's disease. J. Mol. Med. 87, 697–701 (2009).

    CAS  PubMed  Google Scholar 

  83. Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003).

    CAS  PubMed  Google Scholar 

  84. Cirrito, J. R. et al. Synaptic activity regulates interstitial fluid amyloid-β levels in vivo. Neuron 48, 913–922 (2005).

    CAS  PubMed  Google Scholar 

  85. Lacor, P. N. et al. Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J. Neurosci. 27, 796–807 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Palop, J. J. & Mucke, L. Amyloid-β-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nature Neurosci. 13, 812–818 (2010).

    CAS  PubMed  Google Scholar 

  87. Green, K. N. & LaFerla, F. M. Linking calcium to Aβ and Alzheimer's disease. Neuron 59, 190–194 (2008).

    CAS  PubMed  Google Scholar 

  88. Wallace, M. A. Effects of Alzheimer's disease-related β amyloid protein fragments on enzymes metabolizing phosphoinositides in brain. Biochim. Biophys. Acta 1227, 183–187 (1994).

    PubMed  Google Scholar 

  89. Cedazo-Minguez, A., Popescu, B. O., Ankarcrona, M., Nishimura, T. & Cowburn, R. F. The presenilin 1 δE9 mutation gives enhanced basal phospholipase C activity and a resultant increase in intracellular calcium concentrations. J. Biol. Chem. 277, 36646–36655 (2002).

    CAS  PubMed  Google Scholar 

  90. Berman, D. E. et al. Oligomeric amyloid-β peptide disrupts phosphatidylinositol-4,5-bisphosphate metabolism. Nature Neurosci. 11, 547–554 (2008). This study provides the first demonstration that amyloid-β disrupts synaptic function by altering the metabolism of Ptd Ins(4,5)P 2 in cultured neurons and hippocampal slices.

    CAS  PubMed  Google Scholar 

  91. Irie, F., Okuno, M., Pasquale, E. B. & Yamaguchi, Y. EphrinB-EphB signalling regulates clathrin-mediated endocytosis through tyrosine phosphorylation of synaptojanin 1. Nature Cell Biol. 7, 501–509 (2005).

    CAS  PubMed  Google Scholar 

  92. Gong, L. W. & De Camilli, P. Regulation of postsynaptic AMPA responses by synaptojanin 1. Proc. Natl Acad. Sci. USA 105, 17561–17566 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hsieh, H. et al. AMPAR removal underlies Aβ-induced synaptic depression and dendritic spine loss. Neuron 52, 831–843 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Snyder, E. M. et al. Regulation of NMDA receptor trafficking by amyloid-β. Nature Neurosci. 8, 1051–1058 (2005).

    CAS  PubMed  Google Scholar 

  95. Voronov, S. V. et al. Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down's syndrome. Proc. Natl Acad. Sci. USA 105, 9415–9420 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chiang, H. C., Wang, L., Xie, Z., Yau, A. & Zhong, Y. PI3 kinase signaling is involved in Aβ-induced memory loss in Drosophila. Proc. Natl Acad. Sci. USA 107, 7060–7065 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nature Rev. Mol. Cell Biol. 9, 112–124 (2008).

    CAS  Google Scholar 

  98. Stephenson, D. T., Lemere, C. A., Selkoe, D. J. & Clemens, J. A. Cytosolic phospholipase A2 (cPLA2) immunoreactivity is elevated in Alzheimer's disease brain. Neurobiol. Dis. 3, 51–63 (1996).

    CAS  PubMed  Google Scholar 

  99. Prasad, M. R., Lovell, M. A., Yatin, M., Dhillon, H. & Markesbery, W. R. Regional membrane phospholipid alterations in Alzheimer's disease. Neurochem. Res. 23, 81–88 (1998).

    CAS  PubMed  Google Scholar 

  100. Kriem, B. et al. Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-β peptide. FASEB J. 19, 85–87 (2005).

    CAS  PubMed  Google Scholar 

  101. Malaplate-Armand, C. et al. Soluble oligomers of amyloid-β peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol. Dis. 23, 178–189 (2006).

    CAS  PubMed  Google Scholar 

  102. Sanchez-Mejia, R. O. et al. Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer's disease. Nature Neurosci. 11, 1311–1318 (2008). This study provides genetic evidence indicating that a calcium-dependent PLA2 isoform and its product arachidonic acid mediate the synaptotoxic effects of β-amyloid.

    CAS  PubMed  Google Scholar 

  103. Sanchez-Mejia, R. O. & Mucke, L. Phospholipase A2 and arachidonic acid in Alzheimer's disease. Biochim. Biophys. Acta 1801, 784–790 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Oliveira, T. G. et al. Phospholipase d2 ablation ameliorates Alzheimer's disease-linked synaptic dysfunction and cognitive deficits. J. Neurosci. 30, 16419–16428 (2010). This study shows an involvement of PLD2 in the synaptotoxic signalling pathway of amyloid-β using a mouse genetic model.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Raghu, P. et al. Rhabdomere biogenesis in Drosophila photoreceptors is acutely sensitive to phosphatidic acid levels. J. Cell Biol. 185, 129–145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Grosgen, S., Grimm, M. O., Friess, P. & Hartmann, T. Role of amyloid β in lipid homeostasis. Biochim. Biophys. Acta 1801, 966–974 (2010).

    PubMed  Google Scholar 

  107. Puzzo, D. et al. Picomolar amyloid-β positively modulates synaptic plasticity and memory in hippocampus. J. Neurosci. 28, 14537–14545 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ryan, S. D. et al. Amyloid-β42 signals tau hyperphosphorylation and compromises neuronal viability by disrupting alkylacylglycerophosphocholine metabolism. Proc. Natl Acad. Sci. USA 106, 20936–20941 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Nicholson, A. M. & Ferreira, A. Increased membrane cholesterol might render mature hippocampal neurons more susceptible to β-amyloid-induced calpain activation and tau toxicity. J. Neurosci. 29, 4640–4651 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Johnson, G. V. Tau phosphorylation and proteolysis: insights and perspectives. J. Alzheimers Dis. 9, 243–250 (2006).

    CAS  PubMed  Google Scholar 

  111. de Calignon, A. et al. Caspase activation precedes and leads to tangles. Nature 464, 1201–1204 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kawarabayashi, T. et al. Dimeric amyloid β protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer's disease. J. Neurosci. 24, 3801–3809 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hernandez, P., Lee, G., Sjoberg, M. & Maccioni, R. B. Tau phosphorylation by cdk5 and Fyn in response to amyloid peptide Aβ (25-35): involvement of lipid rafts. J. Alzheimers Dis. 16, 149–156 (2009).

    CAS  PubMed  Google Scholar 

  114. Schenck, A. et al. The endosomal protein Appl1 mediates Akt substrate specificity and cell survival in vertebrate development. Cell 133, 486–497 (2008).

    CAS  PubMed  Google Scholar 

  115. Furuya, T. et al. Negative regulation of Vps34 by Cdk mediated phosphorylation. Mol. Cell 38, 500–511 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Garcia-Arencibia, M., Hochfeld, W. E., Toh, P. P. & Rubinsztein, D. C. Autophagy, a guardian against neurodegeneration. Semin. Cell Dev. Biol. 21, 691–698 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Frost, B. & Diamond, M. I. Prion-like mechanisms in neurodegenerative diseases. Nature Rev. Neurosci. 11, 155–159 (2010).

    CAS  Google Scholar 

  118. Nixon, R. A. Niemann-Pick Type C disease and Alzheimer's disease: the APP-endosome connection fattens up. Am. J. Pathol. 164, 757–761 (2004).

    PubMed  PubMed Central  Google Scholar 

  119. Nixon, R. A. Endosome function and dysfunction in Alzheimer's disease and other neurodegenerative diseases. Neurobiol. Aging 26, 373–382 (2005).

    CAS  PubMed  Google Scholar 

  120. Jick, H., Zornberg, G. L., Jick, S. S., Seshadri, S. & Drachman, D. A. Statins and the risk of dementia. Lancet 356, 1627–1631 (2000).

    CAS  PubMed  Google Scholar 

  121. Wolozin, B. et al. Simvastatin is associated with a reduced incidence of dementia and Parkinson's disease. BMC Med. 5, 20 (2007).

    PubMed  PubMed Central  Google Scholar 

  122. Arvanitakis, Z. et al. Statins, incident Alzheimer disease, change in cognitive function, and neuropathology. Neurology 70, 1795–1802 (2008).

    CAS  PubMed  Google Scholar 

  123. Feldman, H. H. et al. Randomized controlled trial of atorvastatin in mild to moderate Alzheimer disease: LEADe. Neurology 74, 956–964 (2010). This is a comprehensive study reporting results from clinical trials on the effects of statins in Alzheimer's disease.

    CAS  PubMed  Google Scholar 

  124. Abrahamson, E. E., Ikonomovic, M. D., Dixon, C. E. & DeKosky, S. T. Simvastatin therapy prevents brain trauma-induced increases in β-amyloid peptide levels. Ann. Neurol. 66, 407–414 (2009).

    CAS  PubMed  Google Scholar 

  125. Kandiah, N. & Feldman, H. H. Therapeutic potential of statins in Alzheimer's disease. J. Neurol. Sci. 283, 230–234 (2009).

    CAS  PubMed  Google Scholar 

  126. Durakoglugil, M. S., Chen, Y., White, C. L., Kavalali, E. T. & Herz, J. Reelin signaling antagonizes β-amyloid at the synapse. Proc. Natl Acad. Sci. USA 106, 15938–15943 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Cole, G. M., Ma, Q. L. & Frautschy, S. A. Omega-3 fatty acids and dementia. Prostaglandins Leukot. Essent. Fatty Acids 81, 213–221 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Palacios-Pelaez, R., Lukiw, W. J. & Bazan, N. G. Omega-3 essential Fatty acids modulate initiation and progression of neurodegenerative disease. Mol. Neurobiol. 41, 367–374 (2010).

    CAS  PubMed  Google Scholar 

  129. Grimm, M. O. et al. Docosahexaenoic Acid reduces amyloid β production via multiple, pleiotropic mechanism. J Biol. Chem. 15 Feb 2011 (doi:10.1074/jbc.M110.182329).

    CAS  Google Scholar 

  130. Bertram, L. & Tanzi, R. E. Genome-wide association studies in Alzheimer's disease. Hum. Mol. Genet. 18, R137–R145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nature Genet. 41, 1088–1093 (2009).

    CAS  PubMed  Google Scholar 

  132. Lambert, J. C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nature Genet. 41, 1094–1099 (2009).

    CAS  PubMed  Google Scholar 

  133. Sanders, A. E. et al. Association of a functional polymorphism in the cholesteryl ester transfer protein (CETP) gene with memory decline and incidence of dementia. JAMA 303, 150–158 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wenk, M. R. The emerging field of lipidomics. Nature Rev. Drug Discov. 4, 594–610 (2005). References 134 and 135 highlight the progress and applications of the expanding field of lipidomics.

    CAS  Google Scholar 

  135. Piomelli, D., Astarita, G. & Rapaka, R. A neuroscientist's guide to lipidomics. Nature Rev. Neurosci. 8, 743–754 (2007).

    CAS  Google Scholar 

  136. Han, X., Holtzman, D. M. & McKeel, D. W. Jr. Plasmalogen deficiency in early Alzheimer's disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J. Neurochem. 77, 1168–1180 (2001).

    CAS  PubMed  Google Scholar 

  137. Cheng, H., Xu, J., McKeel, D. W. Jr & Han, X. Specificity and potential mechanism of sulfatide deficiency in Alzheimer's disease: an electrospray ionization mass spectrometric study. Cell. Mol. Biol. 49, 809–818 (2003).

    CAS  PubMed  Google Scholar 

  138. Cheng, H., Zhou, Y., Holtzman, D. M. & Han, X. Apolipoprotein E mediates sulfatide depletion in animal models of Alzheimer's disease. Neurobiol. Aging 31, 1188–1196 (2010).

    CAS  PubMed  Google Scholar 

  139. Sharman, M. J. et al. Profiling brain and plasma lipids in human APOE epsilon2, epsilon3, and epsilon4 knock-in mice using electrospray ionization mass spectrometry. J. Alzheimers Dis. 20, 105–111 (2010).

    CAS  PubMed  Google Scholar 

  140. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    CAS  PubMed  Google Scholar 

  141. Lingwood, D., Kaiser, H. J., Levental, I. & Simons, K. Lipid rafts as functional heterogeneity in cell membranes. Biochem. Soc. Trans. 37, 955–960 (2009).

    CAS  PubMed  Google Scholar 

  142. Allen, J. A., Halverson-Tamboli, R. A. & Rasenick, M. M. Lipid raft microdomains and neurotransmitter signalling. Nature Rev. Neurosci. 8, 128–140 (2007).

    CAS  Google Scholar 

  143. Jacobson, K., Mouritsen, O. G. & Anderson, R. G. Lipid rafts: at a crossroad between cell biology and physics. Nature Cell Biol. 9, 7–14 (2007).

    CAS  PubMed  Google Scholar 

  144. Ramstedt, B. & Slotte, J. P. Sphingolipids and the formation of sterol-enriched ordered membrane domains. Biochim. Biophys. Acta 1758, 1945–1956 (2006).

    CAS  PubMed  Google Scholar 

  145. Ramstedt, B. & Slotte, J. P. Membrane properties of sphingomyelins. FEBS Lett. 531, 33–37 (2002).

    CAS  PubMed  Google Scholar 

  146. Xu, X. & London, E. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39, 843–849 (2000).

    CAS  PubMed  Google Scholar 

  147. Butterfield, D. A. et al. In vivo oxidative stress in brain of Alzheimer disease transgenic mice: requirement for methionine 35 in amyloid β-peptide of APP. Free Radic. Biol. Med. 48, 136–144 (2010).

    CAS  PubMed  Google Scholar 

  148. Schneider, C., Porter, N. A. & Brash, A. R. Routes to 4-hydroxynonenal: fundamental issues in the mechanisms of lipid peroxidation. J. Biol. Chem. 283, 15539–15543 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Bush, A. I. & Tanzi, R. E. Therapeutics for Alzheimer's disease based on the metal hypothesis. Neurotherapeutics 5, 421–432 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank R. Chan, T. G. Oliveira, D. Berman and L. B. McIntire for critical reading of the manuscript. Work from the authors is supported by US National Institutes of Health grants NS056049, HD05547 and AG033212 (G.D.P.), and NS074536 and AG033199 (T.-W.K.), the American Health Assistance Foundation (T.-W.K.), the Cure Alzheimer's Fund (T.-W.K.), the Alzheimer's Drug Discovery Foundation (T.-W.K.), the Alzheimer's Association (G.D.P.) and the McKnight Foundation (G.D.P.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gilbert Di Paolo or Tae-Wan Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1

The mevalonate pathway and cholesterol metabolism. (PDF 965 kb)

Supplementary information S2

Sphingolipids and glycosphingiolipids. (PDF 1981 kb)

Supplementary information S3

Glycerophospholipids and fatty acids. (PDF 1036 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Paolo, G., Kim, TW. Linking lipids to Alzheimer's disease: cholesterol and beyond. Nat Rev Neurosci 12, 284–296 (2011). https://doi.org/10.1038/nrn3012

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3012

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing