Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications

Key Points

  • Neuroimaging studies have revealed an emerging pattern of generalized prefrontal cortex (PFC) dysfunction in drug-addicted individuals that is associated with worse outcome — more drug use, worse PFC-related task performance and greater likelihood of relapse.

  • Widespread PFC activation in drug-addicted individuals upon taking cocaine or other drugs and upon presentation of drug-related cues is replaced by widespread PFC hypoactivity during exposure to higher-order emotional and cognitive challenges and/or during protracted withdrawal when not stimulated.

  • The nature of the findings in PFC is different when abusers are studied during intoxication or craving and when they are studied during acute or protracted withdrawal, and this is to be expected considering the distinct role of the PFC in these processes.

  • PFC regions may be implicated in what seem to be opposite processes. This may reflect the limited temporal resolution of imaging technologies or methodological variability. Processes also reflect the function of networks rather than isolated regions, so that the output of a region will differ as it connects with different networks.

  • Although activity among PFC regions is highly integrated and flexible, such that any one region is involved in multiple functions, the dorsal PFC (including the dorsal anterior cingulate cortex, dorsolateral PFC and inferior frontal gyrus) has been predominantly implicated in top-down control and meta-cognitive functions (including awareness), the ventromedial PFC (including subgenual ACC and medial orbitofrontal cortex) in emotion regulation (including conditioning and assigning incentive salience to drugs and drug-related cues), and the ventrolateral PFC and lateral OFC in automatic response tendencies (for example, drug-related attention bias) and impulsivity.

  • Dysfunction of these PFC regions may contribute to impaired response inhibition and salience attribution (iRISA) in addiction, neuropsychological mechanisms that underlie the development of craving, compulsive use and impaired self-awareness (previously labelled 'denial' of illness and/or need for treatment), which are characteristic symptoms of drug addiction.

  • PFC dysfunction may in some instances precede drug use and confer vulnerability for (or protection against) developing substance use disorders.

  • Specific biomarkers could be targeted for intervention purposes. For example, PFC abnormalities could be used to identify the children and adolescents who would benefit most from intensive drug abuse prevention efforts.

  • The combination of targeted pharmacological interventions (for example, to enhance dopaminergic neurotransmission) with cognitive–behavioural exercises (for example, to enhance inhibitory control and non drug-related motivation, and reduce drug-related attention bias) could normalize select PFC functions. Ameliorating these deficits could help addicted subjects to engage in rehabilitation treatment.

Abstract

The loss of control over drug intake that occurs in addiction was initially believed to result from disruption of subcortical reward circuits. However, imaging studies in addictive behaviours have identified a key involvement of the prefrontal cortex (PFC) both through its regulation of limbic reward regions and its involvement in higher-order executive function (for example, self-control, salience attribution and awareness). This Review focuses on functional neuroimaging studies conducted in the past decade that have expanded our understanding of the involvement of the PFC in drug addiction. Disruption of the PFC in addiction underlies not only compulsive drug taking but also accounts for the disadvantageous behaviours that are associated with addiction and the erosion of free will.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioural manifestations of the iRISA syndrome of drug addiction.
Figure 2: Recent neuroimaging studies of PFC activity in drug-addicted individuals.
Figure 3: A model of PFC involvement in iRISA in addiction.
Figure 4: The effect of oral methylphenidate on anterior cingulate cortex activity and function in cocaine addiction.

Similar content being viewed by others

References

  1. Wise, R. A. Neurobiology of addiction. Curr. Opin. Neurobiol. 6, 243–251 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Everitt, B. J., Dickinson, A. & Robbins, T. W. The neuropsychological basis of addictive behaviour. Brain Res. Brain Res. Rev. 36, 129–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Di Chiara, G. & Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl Acad. Sci. USA 85, 5274–5278 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Volkow, N. D. & Fowler, J. S. Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb. Cortex 10, 318–325 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Robinson, T. E., Gorny, G., Mitton, E. & Kolb, B. Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse 39, 257–266 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Robinson, T. E. & Kolb, B. Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur. J. Neurosci. 11, 1598–1604 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Goldstein, R. Z. & Volkow, N. D. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am. J. Psychiatry 159, 1642–1652 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Volkow, N. D., Fowler, J. S. & Wang, G. J. The addicted human brain: insights from imaging studies. J. Clin. Invest. 111, 1444–1451 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Volkow, N. D. & Li, T. K. Drug addiction: the neurobiology of behaviour gone awry. Nature Rev. Neurosci. 5, 963–970 (2004).

    Article  CAS  Google Scholar 

  10. Schoenbaum, G., Roesch, M. R., Stalnaker, T. A. & Takahashi, Y. K. A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nature Rev. Neurosci. 10, 885–892 (2009).

    Article  CAS  Google Scholar 

  11. Mansouri, F. A., Tanaka, K. & Buckley, M. J. Conflict-induced behavioural adjustment: a clue to the executive functions of the prefrontal cortex. Nature Rev. Neurosci. 10, 141–152 (2009).

    Article  CAS  Google Scholar 

  12. Kufahl, P. R. et al. Neural responses to acute cocaine administration in the human brain detected by fMRI. Neuroimage 28, 904–914 (2005).

    Article  PubMed  Google Scholar 

  13. Kufahl, P. et al. Expectation modulates human brain responses to acute cocaine: a functional magnetic resonance imaging study. Biol. Psychiatry 63, 222–230 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Volkow, N. D. et al. Expectation enhances the regional brain metabolic and the reinforcing effects of stimulants in cocaine abusers. J. Neurosci. 23, 11461–11468 (2003). This study shows that the regional brain activation induced by intravenous MPH is influenced by the expectation that the subjects have when the drug is given, indicating that drug effects in an addicted individual are not just a function of the pharmacological characteristics of the drug but of past experiences and the expectations that these generate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Howell, L. L., Votaw, J. R., Goodman, M. M. & Lindsey, K. P. Cortical activation during cocaine use and extinction in rhesus monkeys. Psychopharmacology 208, 191–199 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Howell, L. L. et al. Cocaine-induced brain activation determined by positron emission tomography neuroimaging in conscious rhesus monkeys. Psychopharmacology 159, 154–160 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Henry, P. K., Murnane, K. S., Votaw, J. R. & Howell, L. L. Acute brain metabolic effects of cocaine in rhesus monkeys with a history of cocaine use. Brain Imaging Behav. 4, 212–219 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ahmed, S. H. & Koob, G. F. Transition from moderate to excessive drug intake: change in hedonic set point. Science 282, 298–300 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Febo, M. et al. Imaging cocaine-induced changes in the mesocorticolimbic dopaminergic system of conscious rats. J. Neurosci. Methods 139, 167–176 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mandeville, J. B. et al. FMRI of cocaine self-administration in macaques reveals functional inhibition of basal ganglia. Neuropsychopharmacology 36, 1187–1198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zubieta, J. K. et al. Regional cerebral blood flow responses to smoking in tobacco smokers after overnight abstinence. Am. J. Psychiatry 162, 567–577 (2005).

    Article  PubMed  Google Scholar 

  22. Sell, L. A. et al. Neural responses associated with cue evoked emotional states and heroin in opiate addicts. Drug Alcohol Depend. 60, 207–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Domino, E. F. et al. Effects of nicotine on regional cerebral glucose metabolism in awake resting tobacco smokers. Neuroscience 101, 277–282 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Myrick, H. et al. Differential brain activity in alcoholics and social drinkers to alcohol cues: relationship to craving. Neuropsychopharmacology 29, 393–402 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. de Greck, M. et al. Decreased neural activity in reward circuitry during personal reference in abstinent alcoholics-a fMRI study. Hum. Brain Mapp. 30, 1691–1704 (2009).

    Article  PubMed  Google Scholar 

  26. Zijlstra, F., Veltman, D. J., Booij, J., van den Brink, W. & Franken, I. H. Neurobiological substrates of cue-elicited craving and anhedonia in recently abstinent opioid-dependent males. Drug Alcohol Depend. 99, 183–192 (2009).

    Article  PubMed  Google Scholar 

  27. Yalachkov, Y., Kaiser, J. & Naumer, M. J. Brain regions related to tool use and action knowledge reflect nicotine dependence. J. Neurosci. 29, 4922–4929 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heinz, A. et al. Brain activation elicited by affectively positive stimuli is associated with a lower risk of relapse in detoxified alcoholic subjects. Alcohol. Clin. Exp. Res. 31, 1138–1147 (2007).

    Article  PubMed  Google Scholar 

  29. Grusser, S. M. et al. Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology 175, 296–302 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Garavan, H. et al. Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am. J. Psychiatry 157, 1789–1798 (2000). In cocaine users, watching a cocaine-related film induced greater ACC activation than watching a sexually explicit film. This study suggests that drug-related cues in drug-addicted individuals activate similar neuroanatomical substrates as naturally evocative stimuli in healthy controls.

    Article  CAS  PubMed  Google Scholar 

  31. Brody, A. L. et al. Brain metabolic changes during cigarette craving. Arch. Gen. Psychiatry 59, 1162–1172 (2002).

    Article  PubMed  Google Scholar 

  32. Artiges, E. et al. Exposure to smoking cues during an emotion recognition task can modulate limbic fMRI activation in cigarette smokers. Addict. Biol. 14, 469–477 (2009).

    Article  PubMed  Google Scholar 

  33. Zhang, X. et al. Masked smoking-related images modulate brain activity in smokers. Hum. Brain Mapp. 30, 896–907 (2009).

    Article  PubMed  Google Scholar 

  34. Childress, A. R. et al. Prelude to passion: limbic activation by “unseen” drug and sexual cues. PLoS ONE 3, e1506 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Filbey, F. M. et al. Exposure to the taste of alcohol elicits activation of the mesocorticolimbic neurocircuitry. Neuropsychopharmacology 33, 1391–1401 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Urban, N. B. et al. Sex differences in striatal dopamine release in young adults after oral alcohol challenge: a positron emission tomography imaging study with [11C]raclopride. Biol. Psychiatry 68, 689–696 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. King, A., McNamara, P., Angstadt, M. & Phan, K. L. Neural substrates of alcohol-induced smoking urge in heavy drinking nondaily smokers. Neuropsychopharmacology 35, 692–701 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Volkow, N. D. et al. Activation of orbital and medial prefrontal cortex by methylphenidate in cocaine-addicted subjects but not in controls: relevance to addiction. J. Neurosci. 25, 3932–3939 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ko, C. H. et al. Brain activities associated with gaming urge of online gaming addiction. J. Psychiatr. Res. 43, 739–747 (2009).

    Article  PubMed  Google Scholar 

  40. Crockford, D. N., Goodyear, B., Edwards, J., Quickfall, J. & el-Guebaly, N. Cue-induced brain activity in pathological gamblers. Biol. Psychiatry 58, 787–795 (2005).

    Article  PubMed  Google Scholar 

  41. Goudriaan, A. E., De Ruiter, M. B., Van Den Brink, W., Oosterlaan, J. & Veltman, D. J. Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study. Addict. Biol. 15, 491–503 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Reuter, J. et al. Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nature Neurosci. 8, 147–148 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Volkow, N. D., Wang, G. J., Fowler, J. S. & Telang, F. Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Phil. Trans. R. Soc. Lond. B Biol. Sci. 363, 3191–3200 (2008).

    Article  Google Scholar 

  45. Wang, G. J. et al. Brain dopamine and obesity. Lancet. 357, 354–357 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Uher, R. et al. Medial prefrontal cortex activity associated with symptom provocation in eating disorders. Am. J. Psychiatry 161, 1238–1246 (2004).

    Article  PubMed  Google Scholar 

  47. Miyake, Y. et al. Neural processing of negative word stimuli concerning body image in patients with eating disorders: an fMRI study. Neuroimage 50, 1333–1339 (2010).

    Article  PubMed  Google Scholar 

  48. Culbertson, C. S. et al. Effect of bupropion treatment on brain activation induced by cigarette-related cues in smokers. Arch. Gen. Psychiatry 68, 505–515.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Franklin, T. et al. Effects of varenicline on smoking cue-triggered neural and craving responses. Arch. Gen. Psychiatry 68, 516–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, Z. et al. Neural substrates of abstinence-induced cigarette cravings in chronic smokers. J. Neurosci. 27, 14035–14040 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Janes, A. C. et al. Brain fMRI reactivity to smoking-related images before and during extended smoking abstinence. Exp. Clin. Psychopharmacol. 17, 365–373 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  52. McClernon, F. J., Kozink, R. V., Lutz, A. M. & Rose, J. E. 24-h smoking abstinence potentiates fMRI-BOLD activation to smoking cues in cerebral cortex and dorsal striatum. Psychopharmacology 204, 25–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. McBride, D., Barrett, S. P., Kelly, J. T., Aw, A. & Dagher, A. Effects of expectancy and abstinence on the neural response to smoking cues in cigarette smokers: an fMRI study. Neuropsychopharmacology 31, 2728–2738 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Wilson, S. J., Sayette, M. A., Delgado, M. R. & Fiez, J. A. Instructed smoking expectancy modulates cue-elicited neural activity: a preliminary study. Nicotine Tob. Res. 7, 637–645 (2005).

    Article  PubMed  Google Scholar 

  55. Volkow, N. D. et al. Cognitive control of drug craving inhibits brain reward regions in cocaine abusers. Neuroimage 49, 2536–2543 (2010). This study shows that when cocaine abusers try to suppress craving, this results in inhibition of limbic brain regions that is inversely associated with activation of the right inferior frontal cortex (Brodmann area 44), which is a key region for inhibitory control.

    Article  PubMed  Google Scholar 

  56. Brody, A. L. et al. Neural substrates of resisting craving during cigarette cue exposure. Biol. Psychiatry 62, 642–651 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kober, H. et al. Prefrontal-striatal pathway underlies cognitive regulation of craving. Proc. Natl Acad. Sci. USA 107, 14811–14816 (2010). Considering the long-term consequences of consuming cigarettes was associated with decreased craving and decreased activity in PFC regions associated with craving, and with increased activity in PFC regions associated with cognitive control. This study offers a specific cognitive–behavioural intervention to reduce cue-induced craving.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pelchat, M. L., Johnson, A., Chan, R., Valdez, J. & Ragland, J. D. Images of desire: food-craving activation during fMRI. Neuroimage 23, 1486–1493 (2004).

    Article  PubMed  Google Scholar 

  59. Volkow, N. D., Fowler, J. S., Wang, G. J. & Swanson, J. M. Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Mol. Psychiatry 9, 557–569 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Koob, G. F. & Le Moal, M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24, 97–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Solomon, R. L. & Corbit, J. D. An opponent-process theory of motivation. I. Temporal dynamics of affect. Psychol. Rev. 81, 119–145 (1974).

    Article  CAS  PubMed  Google Scholar 

  62. Solomon, R. L. & Corbit, J. D. An opponent-process theory of motivation. II. Cigarette addiction. J. Abnorm. Psychol. 81, 158–171 (1973).

    Article  CAS  PubMed  Google Scholar 

  63. Rolls, E. T. Precis of The brain and emotion. Behav. Brain Sci. 23, 177–191; discussion 192–233 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Russell, M. in Drugs and Drug Dependence (ed. Edwards, G.) 182–187 (Lexington Books, 1976).

    Google Scholar 

  65. Gold, M. S. in Substance Abuse: A Comprehensive Textbook (eds Lowinson, J. H., Ruiz, P., Millman, R. B. & Langrod, J. G.) 181–199 (Williams & Wilkins, 1997).

    Google Scholar 

  66. Cheetham, A., Allen, N. B., Yucel, M. & Lubman, D. I. The role of affective dysregulation in drug addiction. Clin. Psychol. Rev. 30, 621–634 (2010).

    Article  PubMed  Google Scholar 

  67. Sinha, R. The role of stress in addiction relapse. Curr. Psychiatry Rep. 9, 388–395 (2007).

    Article  PubMed  Google Scholar 

  68. Aguilar de Arcos, F., Verdejo-Garcia, A., Peralta-Ramirez, M. I., Sanchez-Barrera, M. & Perez-Garcia, M. Experience of emotions in substance abusers exposed to images containing neutral, positive, and negative affective stimuli. Drug Alcohol Depend. 78, 159–167 (2005).

    Article  PubMed  Google Scholar 

  69. Verdejo-Garcia, A., Bechara, A., Recknor, E. C. & Perez-Garcia, M. Executive dysfunction in substance dependent individuals during drug use and abstinence: an examination of the behavioral, cognitive, and emotional correlates of addiction. J. Int. Neuropsychol. Soc. 12, 405–415 (2006).

    PubMed  Google Scholar 

  70. Goldstein, R. Z. et al. Is decreased prefrontal cortical sensitivity to monetary reward associated with impaired motivation and self-control in cocaine addiction? Am. J. Psychiatry 164, 43–51 (2007). Sustained monetary reward was associated with a robust neuronal activation pattern in healthy control subjects but not in cocaine-addicted subjects. In addition, this study reported results that are consistent with impaired self-awareness in cocaine addiction.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Elliott, R., Newman, J. L., Longe, O. A. & Deakin, J. F. Differential response patterns in the striatum and orbitofrontal cortex to financial reward in humans: a parametric functional magnetic resonance imaging study. J. Neurosci. 23, 303–307 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Breiter, H. C., Aharon, I., Kahneman, D., Dale, A. & Shizgal, P. Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 30, 619–639 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Kringelbach, M. L., O'Doherty, J., Rolls, E. T. & Andrews, C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb. Cortex 13, 1064–1071 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Knutson, B., Westdorp, A., Kaiser, E. & Hommer, D. FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage 12, 20–27 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. O'Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J. & Andrews, C. Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neurosci. 4, 95–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Hornak, J. et al. Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J. Cogn. Neurosci. 16, 463–478 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Goldstein, R. Z. et al. Subjective sensitivity to monetary gradients is associated with frontolimbic activation to reward in cocaine abusers. Drug Alcohol Depend. 87, 233–240 (2007).

    Article  PubMed  Google Scholar 

  79. Roesch, M. R., Taylor, A. R. & Schoenbaum, G. Encoding of time-discounted rewards in orbitofrontal cortex is independent of value representation. Neuron 51, 509–520 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kirby, K. N. & Petry, N. M. Heroin and cocaine abusers have higher discount rates for delayed rewards than alcoholics or non-drug-using controls. Addiction 99, 461–471 (2004).

    Article  PubMed  Google Scholar 

  81. Monterosso, J. R. et al. Frontoparietal cortical activity of methamphetamine-dependent and comparison subjects performing a delay discounting task. Hum. Brain Mapp. 28, 383–393 (2007).

    Article  PubMed  Google Scholar 

  82. Kampman, K. M. What's new in the treatment of cocaine addiction? Curr. Psychiatry Rep. 12, 441–447 (2010).

    Article  PubMed  Google Scholar 

  83. Goldstein, R. Z. et al. Anterior cingulate cortex hypoactivations to an emotionally salient task in cocaine addiction. Proc. Natl Acad. Sci. USA 106, 9453–9458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Goldstein, R. Z. et al. Dopaminergic response to drug words in cocaine addiction. J. Neurosci. 29, 6001–6006 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Reichel, C. M. & Bevins, R. A. Competition between the conditioned rewarding effects of cocaine and novelty. Behav. Neurosci. 122, 140–150 (2008).

    Article  PubMed  Google Scholar 

  86. Mattson, B. J., Williams, S., Rosenblatt, J. S. & Morrell, J. I. Comparison of two positive reinforcing stimuli: pups and cocaine throughout the postpartum period. Behav. Neurosci. 115, 683–694 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Zombeck, J. A. et al. Neuroanatomical specificity of conditioned responses to cocaine versus food in mice. Physiol. Behav. 93, 637–650 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Aigner, T. G. & Balster, R. L. Choice behavior in rhesus monkeys: cocaine versus food. Science 201, 534–535 (1978).

    Article  CAS  PubMed  Google Scholar 

  89. Woolverton, W. L. & Anderson, K. G. Effects of delay to reinforcement on the choice between cocaine and food in rhesus monkeys. Psychopharmacolog. 186, 99–106 (2006).

    Article  CAS  Google Scholar 

  90. Buhler, M. et al. Nicotine dependence is characterized by disordered reward processing in a network driving motivation. Biol. Psychiatry 67, 745–752 (2010). Occasional smokers showed greater behavioural responses and mesocorticolimbic reactivity to stimuli predicting monetary versus cigarette rewards, whereas in dependent smokers these responses were equal for both reward types. This suggests an imbalance in the incentive salience attributed to drug-reward-predicting versus non-drug reward predicting cues in drug addiction.

    Article  CAS  PubMed  Google Scholar 

  91. Moeller, S. J. et al. Enhanced choice for viewing cocaine pictures in cocaine addiction. Biol. Psychiatry 66, 169–176 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Moeller, S. J. et al. Impaired insight in cocaine addiction: laboratory evidence and effects on cocaine-seeking behaviour. Brain. 133, 1484–1493 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kim, Y. T. et al. Alterations in cortical activity of male methamphetamine abusers performing an empathy task: fMRI study. Hum. Psychopharmacol. 25, 63–70 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Wang, Z. X. et al. Alterations in the processing of non-drug-related affective stimuli in abstinent heroin addicts. Neuroimage 49, 971–976 (2010).

    Article  PubMed  Google Scholar 

  95. Salloum, J. B. et al. Blunted rostral anterior cingulate response during a simplified decoding task of negative emotional facial expressions in alcoholic patients. Alcohol. Clin. Exp. Res. 31, 1490–1504 (2007).

    Article  PubMed  Google Scholar 

  96. Asensio, S. et al. Altered neural response of the appetitive emotional system in cocaine addiction: an fMRI Study. Addict. Biol. 15, 504–516 (2010).

    Article  PubMed  Google Scholar 

  97. Gruber, S. A., Rogowska, J. & Yurgelun-Todd, D. A. Altered affective response in marijuana smokers: an FMRI study. Drug Alcohol Depend. 105, 139–153 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Payer, D. E. et al. Differences in cortical activity between methamphetamine-dependent and healthy individuals performing a facial affect matching task. Drug Alcohol Depend. 93, 93–102 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Deroche-Gamonet, V., Belin, D. & Piazza, P. V. Evidence for addiction-like behavior in the rat. Science 305, 1014–1017 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. de Ruiter, M. B. et al. Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology 34, 1027–1038 (2009).

    Article  PubMed  Google Scholar 

  101. Goldstein, R. Z. et al. The effect of practice on a sustained attention task in cocaine abusers. Neuroimage 35, 194–206 (2007).

    Article  PubMed  Google Scholar 

  102. Goldstein, R. Z. et al. Severity of neuropsychological impairment in cocaine and alcohol addiction: association with metabolism in the prefrontal cortex. Neuropsychologia 42, 1447–1458 (2004).

    Article  PubMed  Google Scholar 

  103. Garavan, H. & Hester, R. The role of cognitive control in cocaine dependence. Neuropsychol. Rev. 17, 337–345 (2007).

    Article  PubMed  Google Scholar 

  104. Aharonovich, E., Nunes, E. & Hasin, D. Cognitive impairment, retention and abstinence among cocaine abusers in cognitive-behavioral treatment. Drug Alcohol Depend. 71, 207–211 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Aharonovich, E. et al. Cognitive deficits predict low treatment retention in cocaine dependent patients. Drug Alcohol Depend. 81, 313–322 (2006).

    Article  PubMed  Google Scholar 

  106. Goldstein, R. Z., Moeller, S. J. & Volkow, N. D. . in Neuroimaging in the Addictions (eds Adinoff, B. & Stein, E. A.) (Weily, 2011).

    Google Scholar 

  107. Tarter, R. E. et al. Neurobehavioral disinhibition in childhood predicts early age at onset of substance use disorder. Am. J. Psychiatry 160, 1078–1085 (2003).

    Article  PubMed  Google Scholar 

  108. Moffitt, T. E. et al. A gradient of childhood self-control predicts health, wealth, and public safety. Proc. Natl Acad. Sci. USA 108, 2693–2698 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kaufman, J. N., Ross, T. J., Stein, E. A. & Garavan, H. Cingulate hypoactivity in cocaine users during a GO-NOGO task as revealed by event-related functional magnetic resonance imaging. J. Neurosci. 23, 7839–7843 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hester, R. & Garavan, H. Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. J. Neurosci. 24, 11017–11022 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fu, L. P. et al. Impaired response inhibition function in abstinent heroin dependents: an fMRI study. Neurosci. Lett. 438, 322–326 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Li, C. S. et al. Neural correlates of impulse control during stop signal inhibition in cocaine-dependent men. Neuropsychopharmacology 33, 1798–1806 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Li, C. S., Luo, X., Yan, P., Bergquist, K. & Sinha, R. Altered impulse control in alcohol dependence: neural measures of stop signal performance. Alcohol. Clin. Exp. Res. 33, 740–750 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kozink, R. V., Kollins, S. H. & McClernon, F. J. Smoking withdrawal modulates right inferior frontal cortex but not presupplementary motor area activation during inhibitory control. Neuropsychopharmacology 35, 2600–2606 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Leland, D. S., Arce, E., Miller, D. A. & Paulus, M. P. Anterior cingulate cortex and benefit of predictive cueing on response inhibition in stimulant dependent individuals. Biol. Psychiatry 63, 184–190 (2008). Informative cueing enhanced inhibitory control in a go/no-go task, and this was correlated with enhanced ACC activation in methamphetamine-addicted individuals. This study offers a specific cognitive–behavioural intervention that could be used to enhance inhibitory control in addiction.

    Article  PubMed  Google Scholar 

  116. Stroop, J. R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–662 (1935).

    Article  Google Scholar 

  117. Leung, H. C., Skudlarski, P., Gatenby, J. C., Peterson, B. S. & Gore, J. C. An event-related functional MRI study of the stroop color word interference task. Cereb. Cortex. 10, 552–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Pardo, J. V., Pardo, P. J., Janer, K. W. & Raichle, M. E. The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc. Natl Acad. Sci. USA 87, 256–259 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bench, C. J. et al. Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia 31, 907–922 (1993).

    Article  CAS  PubMed  Google Scholar 

  120. Carter, C. S. & van Veen, V. Anterior cingulate cortex and conflict detection: an update of theory and data. Cogn. Affect. Behav. Neurosci. 7, 367–379 (2007).

    Article  PubMed  Google Scholar 

  121. Bolla, K. et al. Prefrontal cortical dysfunction in abstinent cocaine abusers. J. Neuropsychiatry Clin. Neurosci. 16, 456–464 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Eldreth, D. A., Matochik, J. A., Cadet, J. L. & Bolla, K. I. Abnormal brain activity in prefrontal brain regions in abstinent marijuana users. Neuroimage 23, 914–920 (2004).

    Article  PubMed  Google Scholar 

  123. Salo, R., Ursu, S., Buonocore, M. H., Leamon, M. H. & Carter, C. Impaired prefrontal cortical function and disrupted adaptive cognitive control in methamphetamine abusers: a functional magnetic resonance imaging study. Biol. Psychiatry 65, 706–709 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Azizian, A. et al. Smoking reduces conflict-related anterior cingulate activity in abstinent cigarette smokers performing a stroop task. Neuropsychopharmacology 35, 775–782 (2010).

    Article  PubMed  Google Scholar 

  125. Brewer, J. A., Worhunsky, P. D., Carroll, K. M., Rounsaville, B. J. & Potenza, M. N. Pretreatment brain activation during stroop task is associated with outcomes in cocaine-dependent patients. Biol. Psychiatry 64, 998–1004 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ersche, K. D. et al. Influence of compulsivity of drug abuse on dopaminergic modulation of attentional bias in stimulant dependence. Arch. Gen. Psychiatry 67, 632–644 (2010). Stimulant-dependent individuals demonstrated an attentional bias for drug-related words, which was correlated with greater cue-related activation of the left prefrontal cortex; attentional bias was greater in people with highly compulsive patterns of stimulant abuse. This study also suggests that the effects of dopaminergic challenges on attentional interference and related brain activation depend on an individual's baseline compulsivity level.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Luijten, M. et al. Neurobiological substrate of smoking related attentional bias. Neuroimage 54, 2374–2381 (2010).

    Article  PubMed  Google Scholar 

  128. Janes, A. C. et al. Neural substrates of attentional bias for smoking-related cues: an fMRI study. Neuropsychopharmacology 35, 2339–2345 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Goldstein, R. Z. et al. Role of the anterior cingulate and medial orbitofrontal cortex in processing drug cues in cocaine addiction. Neuroscience 144, 1153–1159 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Nestor, L., McCabe, E., Jones, J., Clancy, L. & Garavan, H. Differences in “bottom-up” and “top-down” neural activity in current and former cigarette smokers: evidence for neural substrates which may promote nicotine abstinence through increased cognitive control. Neuroimage 56, 2258–2275.

  131. Khantzian, E. J. The self-medication hypothesis of addictive disorders: focus on heroin and cocaine dependence. Am. J. Psychiatry 142, 1259–1264 (1985).

    Article  CAS  PubMed  Google Scholar 

  132. Khantzian, E. J. The self-medication hypothesis of substance use disorders: a reconsideration and recent applications. Harv. Rev. Psychiatry 4, 231–244 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Langleben, D. D. et al. Acute effect of methadone maintenance dose on brain FMRI response to heroin-related cues. Am. J. Psychiatry. 165, 390–394 (2008).

    Article  PubMed  Google Scholar 

  134. Garavan, H., Kaufman, J. N. & Hester, R. Acute effects of cocaine on the neurobiology of cognitive control. Phil. Trans. R. Soc. Lond. B Biol. Sci. 363, 3267–3276 (2008).

    Article  Google Scholar 

  135. Li, C. S. et al. Biological markers of the effects of intravenous methylphenidate on improving inhibitory control in cocaine-dependent patients. Proc. Natl Acad. Sci. USA 107, 14455–14459 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Volkow, N. D. et al. Methylphenidate attenuates limbic brain inhibition after cocaine-cues exposure in cocaine abusers. PLoS ONE 5, e11509 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Goldstein, R. Z. et al. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task. Proc. Natl Acad. Sci. USA 107, 16667–16672 (2010). Oral MPH decreased impulsivity in a drug-relevant emotional Stroop task, and this decrease was associated with normalization of activation in the rostroventral ACC (extending to the mOFC) and dACC in cocaine-addicted individuals. These results suggest that oral MPH may have therapeutic benefits in improving cognitive–behavioural functions in cocaine-addicted individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Adinoff, B. et al. Altered neural cholinergic receptor systems in cocaine-addicted subjects. Neuropsychopharmacology 35, 1485–1499 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Goldstein, R. Z. et al. The neurocircuitry of impaired insight in drug addiction. Trends Cogn. Sci. 13, 372–380 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Reekie, Y. L., Braesicke, K., Man, M. S. & Roberts, A. C. Uncoupling of behavioral and autonomic responses after lesions of the primate orbitofrontal cortex. Proc. Natl Acad. Sci. USA 105, 9787–9792 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Goldstein, R. Z. et al. Compromised sensitivity to monetary reward in current cocaine users: an ERP study. Psychophysiology 45, 705–713 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Chiu, P. H., Lohrenz, T. M. & Montague, P. R. Smokers' brains compute, but ignore, a fictive error signal in a sequential investment task. Nature Neurosci. 11, 514–520 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Rinn, W., Desai, N., Rosenblatt, H. & Gastfriend, D. R. Addiction denial and cognitive dysfunction: a preliminary investigation. J. Neuropsychiatry Clin. Neurosci. 14, 52–57 (2002).

    Article  PubMed  Google Scholar 

  144. Hester, R., Nestor, L. & Garavan, H. Impaired error awareness and anterior cingulate cortex hypoactivity in chronic cannabis users. Neuropsychopharmacology 34, 2450–2458 (2009). Cannabis users showed a deficit in awareness of commission errors, and this was associated with hypoactivity in the ACC and right insula in the go/no-go task. This study points to deficits in the role of the ACC and insula in monitoring interoceptive awareness in drug addiction.

    Article  PubMed  Google Scholar 

  145. Payer, D. E., Lieberman, M. D. & London, E. D. Neural correlates of affect processing and aggression in methamphetamine dependence. Arch. Gen. Psychiatry. 68, 271–282 (2010). The ventrolateral PFC was hypoactive during affect matching in methamphetamine-dependent subjects, and this was associated with more self-reported alexithymia, pointing to a mechanism that limits emotional insight and possibly contributes to heightened aggression in addiction.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Kim, J. S. et al. The role of alcoholics' insight in abstinence from alcohol in male Korean alcohol dependents. J. Korean Med. Sci. 22, 132–137 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L. & Petersen, S. E. A dual-networks architecture of top-down control. Trends Cogn. Sci. 12, 99–105 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. & Baker, C. I. Circular analysis in systems neuroscience: the dangers of double dipping. Nature Neurosci. 12, 535–540 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Poldrack, R. A. & Mumford, J. A. Independence in ROI analysis: where is the voodoo? Soc. Cogn. Affect. Neurosci. 4, 208–213 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Biswal, B. B. et al. Toward discovery science of human brain function. Proc. Natl Acad. Sci. USA. 107, 4734–4739 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hanlon, C. A., Wesley, M. J., Roth, A. J., Miller, M. D. & Porrino, L. J. Loss of laterality in chronic cocaine users: an fMRI investigation of sensorimotor control. Psychiatry Res. 181, 15–23 (2009).

    Article  CAS  Google Scholar 

  152. Kushnir, V. et al. Enhanced smoking cue salience associated with depression severity in nicotine-dependent individuals: a preliminary fMRI study. Int. J. Neuropsychopharmacol. 7 July 2010 (doi:10.1017/51461145710000696).

  153. Woicik, P. A. et al. The neuropsychology of cocaine addiction: recent cocaine use masks impairment. Neuropsychopharmacology 34, 1112–1122 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Dunning, J. P. et al. Motivated attention to cocaine and emotional cues in abstinent and current cocaine users--an ERP study. Eur. J. Neurosci. 33, 1716–1723 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Raichle, M. E. & Snyder, A. Z. A default mode of brain function: a brief history of an evolving idea. Neuroimage 37, 1083–1090; discussion 1097–1089 (2007).

    Article  PubMed  Google Scholar 

  156. Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA 100, 253–258 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Hong, L. E. et al. Association of nicotine addiction and nicotine's actions with separate cingulate cortex functional circuits. Arch. Gen. Psychiatry 66, 431–441 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cole, D. M. et al. Nicotine replacement in abstinent smokers improves cognitive withdrawal symptoms with modulation of resting brain network dynamics. Neuroimage 52, 590–599 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Zhang, X. et al. Anatomical differences and network characteristics underlying smoking cue reactivity. Neuroimage 54, 131–141 (2011).

    Article  PubMed  Google Scholar 

  160. Zhang, X. et al. Factors underlying prefrontal and insula structural alterations in smokers. Neuroimage 54, 42–48 (2011).

    Article  PubMed  Google Scholar 

  161. Tomasi, D. et al. Disrupted functional connectivity with dopaminergic midbrain in cocaine abusers. PLoS ONE 5, e10815 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gu, H. et al. Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting-state functional connectivity. Neuroimage 53, 593–601 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Wang, W. et al. Changes in functional connectivity of ventral anterior cingulate cortex in heroin abusers. Chin. Med. J. 123, 1582–1588 (2010).

    PubMed  Google Scholar 

  164. Daglish, M. R. et al. Functional connectivity analysis of the neural circuits of opiate craving: “more” rather than “different”? Neuroimage 20, 1964–1970 (2003).

    Article  PubMed  Google Scholar 

  165. Yuan, K. et al. Combining spatial and temporal information to explore resting-state networks changes in abstinent heroin-dependent individuals. Neurosci. Lett. 475, 20–24 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Fein, G. et al. Cortical gray matter loss in treatment-naive alcohol dependent individuals. Alcohol. Clin. Exp. Res. 26, 558–564 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Chanraud, S. et al. Brain morphometry and cognitive performance in detoxified alcohol-dependents with preserved psychosocial functioning. Neuropsychopharmacology 32, 429–438 (2007).

    Article  PubMed  Google Scholar 

  168. Chanraud, S., Pitel, A. L., Rohlfing, T., Pfefferbaum, A. & Sullivan, E. V. Dual tasking and working memory in alcoholism: relation to frontocerebellar circuitry. Neuropsychopharmacology 35, 1868–1878 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Makris, N. et al. Decreased volume of the brain reward system in alcoholism. Biol. Psychiatry. 64, 192–202 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wobrock, T. et al. Effects of abstinence on brain morphology in alcoholism: a MRI study. Eur. Arch. Psychiatry Clin. Neurosci. 259, 143–150 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Narayana, P. A., Datta, S., Tao, G., Steinberg, J. L. & Moeller, F. G. Effect of cocaine on structural changes in brain: MRI volumetry using tensor-based morphometry. Drug Alcohol Depend. 111, 191–199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Franklin, T. R. et al. Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biol. Psychiatry 51, 134–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  173. Matochik, J. A., London, E. D., Eldreth, D. A., Cadet, J. L. & Bolla, K. I. Frontal cortical tissue composition in abstinent cocaine abusers: a magnetic resonance imaging study. Neuroimage 19, 1095–1102 (2003).

    Article  PubMed  Google Scholar 

  174. Sim, M. E. et al. Cerebellar gray matter volume correlates with duration of cocaine use in cocaine-dependent subjects. Neuropsychopharmacology 32, 2229–2237 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Schwartz, D. L. et al. Global and local morphometric differences in recently abstinent methamphetamine-dependent individuals. Neuroimage 50, 1392–1401 (2010).

    Article  PubMed  Google Scholar 

  176. Yuan, Y. et al. Gray matter density negatively correlates with duration of heroin use in young lifetime heroin-dependent individuals. Brain Cogn. 71, 223–228 (2009).

    Article  PubMed  Google Scholar 

  177. Lyoo, I. K. et al. Prefrontal and temporal gray matter density decreases in opiate dependence. Psychopharmacology 184, 139–144 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. Liu, H. et al. Frontal and cingulate gray matter volume reduction in heroin dependence: optimized voxel-based morphometry. Psychiatry Clin. Neurosci. 63, 563–568 (2009).

    Article  PubMed  Google Scholar 

  179. Brody, A. L. et al. Differences between smokers and nonsmokers in regional gray matter volumes and densities. Biol. Psychiatry 55, 77–84 (2004).

    Article  PubMed  Google Scholar 

  180. Kuhn, S., Schubert, F. & Gallinat, J. Reduced thickness of medial orbitofrontal cortex in smokers. Biol. Psychiatry 68, 1061–1065 (2010).

    Article  PubMed  Google Scholar 

  181. Medina, K. L. et al. Prefrontal cortex volumes in adolescents with alcohol use disorders: unique gender effects. Alcohol. Clin. Exp. Res. 32, 386–394 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Medina, K. L. et al. Prefrontal cortex morphometry in abstinent adolescent marijuana users: subtle gender effects. Addict. Biol. 14, 457–468 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Tanabe, J. et al. Medial orbitofrontal cortex gray matter is reduced in abstinent substance-dependent individuals. Biol. Psychiatry 65, 160–164 (2009).

    Article  PubMed  Google Scholar 

  184. Volkow, N. D. et al. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am. J. Psychiatry 158, 2015–2021 (2001).

    Article  CAS  PubMed  Google Scholar 

  185. Volkow, N. D. et al. Profound decreases in dopamine release in striatum in detoxified alcoholics: possible orbitofrontal involvement. J. Neurosci. 27, 12700–12706 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Volkow, N. D. et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 42, 1537–1543 (2008).

    Article  PubMed  Google Scholar 

  187. Asensio, S. et al. Striatal dopamine D2 receptor availability predicts the thalamic and medial prefrontal responses to reward in cocaine abusers three years later. Synapse 64, 397–402 (2009).

    Article  CAS  Google Scholar 

  188. Fehr, C. et al. Association of low striatal dopamine d2 receptor availability with nicotine dependence similar to that seen with other drugs of abuse. Am. J. Psychiatry 165, 507–514 (2008).

    Article  PubMed  Google Scholar 

  189. Narendran, R. et al. Altered prefrontal dopaminergic function in chronic recreational ketamine users. Am. J. Psychiatry 162, 2352–2359 (2005).

    Article  PubMed  Google Scholar 

  190. Martinez, D. et al. Amphetamine-induced dopamine release: markedly blunted in cocaine dependence and predictive of the choice to self-administer cocaine. Am. J. Psychiatry 164, 622–629 (2007).

    Article  PubMed  Google Scholar 

  191. Gorelick, D. A. et al. Imaging brain mu-opioid receptors in abstinent cocaine users: time course and relation to cocaine craving. Biol. Psychiatry 57, 1573–1582 (2005).

    Article  CAS  PubMed  Google Scholar 

  192. Ghitza, U. E. et al. Brain mu-opioid receptor binding predicts treatment outcome in cocaine-abusing outpatients. Biol. Psychiatry 68, 697–703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Williams, T. M. et al. Brain opioid receptor binding in early abstinence from alcohol dependence and relationship to craving: an [11C]diprenorphine PET study. Eur. Neuropsychopharmacol. 19, 740–748 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. Kling, M. A. et al. Opioid receptor imaging with positron emission tomography and [18F]cyclofoxy in long-term, methadone-treated former heroin addicts. J. Pharmacol. Exp. Ther. 295, 1070–1076 (2000).

    CAS  PubMed  Google Scholar 

  195. Sekine, Y. et al. Brain serotonin transporter density and aggression in abstinent methamphetamine abusers. Arch. Gen. Psychiatry 63, 90–100 (2006).

    Article  CAS  PubMed  Google Scholar 

  196. McCann, U. D. et al. Positron emission tomographic studies of brain dopamine and serotonin transporters in abstinent (±)3,4-methylenedioxymethamphetamine (“ecstasy”) users: relationship to cognitive performance. Psychopharmacology 200, 439–450 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Szabo, Z. et al. Positron emission tomography imaging of the serotonin transporter in subjects with a history of alcoholism. Biol. Psychiatry 55, 766–771 (2004).

    Article  CAS  PubMed  Google Scholar 

  198. Kalivas, P. W. The glutamate homeostasis hypothesis of addiction. Nature Rev. Neurosci. 10, 561–572 (2009).

    Article  CAS  Google Scholar 

  199. Laviolette, S. R. & Grace, A. A. The roles of cannabinoid and dopamine receptor systems in neural emotional learning circuits: implications for schizophrenia and addiction. Cell. Mol. Life Sci. 63, 1597–1613 (2006).

    Article  CAS  PubMed  Google Scholar 

  200. Lopez-Moreno, J. A., Gonzalez-Cuevas, G., Moreno, G. & Navarro, M. The pharmacology of the endocannabinoid system: functional and structural interactions with other neurotransmitter systems and their repercussions in behavioral addiction. Addict. Biol. 13, 160–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  201. Rao, H. et al. Altered resting cerebral blood flow in adolescents with in utero cocaine exposure revealed by perfusion functional MRI. Pediatrics 120, e1245–e1254 (2007).

    Article  PubMed  Google Scholar 

  202. Roberts, G. M. & Garavan, H. Evidence of increased activation underlying cognitive control in ecstasy and cannabis users. Neuroimage 52, 429–435 (2010).

    Article  PubMed  Google Scholar 

  203. Tapert, S. F. et al. Functional MRI of inhibitory processing in abstinent adolescent marijuana users. Psychopharmacology 194, 173–183 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Heitzeg, M. M., Nigg, J. T., Yau, W. Y., Zucker, R. A. & Zubieta, J. K. Striatal dysfunction marks preexisting risk and medial prefrontal dysfunction is related to problem drinking in children of alcoholics. Biol. Psychiatry 68, 287–295 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Heitzeg, M. M., Nigg, J. T., Yau, W. Y., Zubieta, J. K. & Zucker, R. A. Affective circuitry and risk for alcoholism in late adolescence: differences in frontostriatal responses between vulnerable and resilient children of alcoholic parents. Alcohol. Clin. Exp. Res. 32, 414–426 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Volkow, N. D. et al. High levels of dopamine D2 receptors in unaffected members of alcoholic families: possible protective factors. Arch. Gen. Psychiatry 63, 999–1008 (2006).

    Article  CAS  PubMed  Google Scholar 

  207. Sowell, E. R. et al. Abnormal cortical thickness and brain-behavior correlation patterns in individuals with heavy prenatal alcohol exposure. Cereb. Cortex 18, 136–144 (2008).

    Article  PubMed  Google Scholar 

  208. Filbey, F. M., Schacht, J. P., Myers, U. S., Chavez, R. S. & Hutchison, K. E. Individual and additive effects of the CNR1 and FAAH genes on brain response to marijuana cues. Neuropsychopharmacology 35, 967–975 (2010).

    Article  CAS  PubMed  Google Scholar 

  209. Stice, E., Yokum, S., Bohon, C., Marti, N. & Smolen, A. Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4. Neuroimage 50, 1618–1625 (2010).

    Article  CAS  PubMed  Google Scholar 

  210. Lotfipour, S. et al. Orbitofrontal cortex and drug use during adolescence: role of prenatal exposure to maternal smoking and BDNF genotype. Arch. Gen. Psychiatry 66, 1244–1252 (2009).

    Article  PubMed  Google Scholar 

  211. Hill, S. Y. et al. Disruption of orbitofrontal cortex laterality in offspring from multiplex alcohol dependence families. Biol. Psychiatry 65, 129–136 (2009).

    Article  CAS  PubMed  Google Scholar 

  212. Alia-Klein, N. et al. Gene x disease interaction on orbitofrontal gray matter in cocaine addiction. Arch. Gen. Psychiatry 68, 283–294 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Wager, T. D., Lindquist, M. & Kaplan, L. Meta-analysis of functional neuroimaging data: current and future directions. Soc. Cogn. Affect. Neurosci. 2, 150–158 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Wager, T. D., Lindquist, M. A., Nichols, T. E., Kober, H. & Van Snellenberg, J. X. Evaluating the consistency and specificity of neuroimaging data using meta-analysis. Neuroimage 45, S210–S221 (2009).

    Article  PubMed  Google Scholar 

  215. Goldstein, R. Z. & Volkow, N. D. Oral methylphenidate normalizes cingulate activity and decreases impulsivity in cocaine addiction during an emotionally salient cognitive task. Neuropsychopharmacology 36, 366–367 (2011).

    Article  PubMed  Google Scholar 

  216. Kringelbach, M. L. & Rolls, E. T. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog. Neurobiol. 72, 341–372 (2004).

    Article  PubMed  Google Scholar 

  217. Blair, R. J. The amygdala and ventromedial prefrontal cortex: functional contributions and dysfunction in psychopathy. Phil. Trans. R. Soc. Lond. B Biol. Sci. 363, 2557–2565 (2008).

    Article  CAS  Google Scholar 

  218. Ridderinkhof, K. R. et al. Alcohol consumption impairs detection of performance errors in mediofrontal cortex. Science 298, 2209–2211 (2002).

    Article  CAS  PubMed  Google Scholar 

  219. Rajkowska, G. & Goldman-Rakic, P. S. Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System. Cereb. Cortex 5, 323–337 (1995).

    Article  CAS  PubMed  Google Scholar 

  220. Petrides, M. Lateral prefrontal cortex: architectonic and functional organization. Phil. Trans. R. Soc. Lond. B Biol. Sci. 360, 781–795 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the US National Institute on Drug Abuse (R01DA023579 to R.Z.G.), the Intramural NIAAA program and the Department of Energy, Office of Biological and Environmental Research (for infrastructure support). We are grateful for A. B. Konova's contribution to the design of figure 2. We are indebted to our reviewers whose comments were greatly appreciated and guided our revision of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Z. Goldstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (Table).

This table is a summary of the fMRI and PET studies in drug-addicted individuals vs. healthy control subjects conducted during 2000–2010 (articles published in 2011 have not been methodically reviewed), which were used to create (PDF 286 kb)

Supplementary information S2 (Table)

Functional neuroimaging studies (conducted during 2000–2010) comparing PFC activity during direct drug administration in addicted individuals and healthy controls. (PDF 218 kb)

Supplementary information S3 (Table)

Functional neuroimaging studies (conducted during 2000–2010) comparing brain activity during cue exposure in addicted individuals (S) and healthy controls (C) (PDF 235 kb)

Supplementary information S4 (Table)

Functional neuroimaging studies (conducted during 2000–2010) studying effects of abstinence and self-regulation on PFC activity. (PDF 215 kb)

Supplementary information S5 (Table)

Functional neuroimaging studies (conducted during 2000–2010) comparing PFC activity in addicted individuals (S) and healthy controls (C) during performance of selected emotion tasks. (PDF 247 kb)

Supplementary information S6 (Table)

Functional neuroimaging studies (conducted during 2000–2010) comparing PFC activity in addicted individuals (S) and healthy controls (C) during performance of inhibitory control tasks. (PDF 242 kb)

Supplementary information S7 (Table)

Functional neuroimaging studies (conducted during 2000–2010) comparing neurotransmitter systems in individuals with addiction (S) and healthy controls (C). (PDF 238 kb)

Supplementary information S8 (figure).

Recent neuroimaging studies of PFC activity in drug-addicted individuals. (PDF 3543 kb)

Related links

Related links

FURTHER INFORMATION

Rita Z. Goldstein's homepage

The Brookhaven National Laboratory Neuropsychoimaging Group homepage

National Institute on Drug Abuse homepage

University of Colorado CANLab Software website

Glossary

18Fluorodyoxyglucose PET

(18F-PET). Positron emission tomography (PET) with a radioligand to image regional glucose uptake, a measure of metabolic activity that can also be used to assess global brain function.

Methylphenidate

(MPH). A mild stimulant (approved for treatment of attention deficit hyperactivity disorder) with similar pharmacological effects to cocaine (it blocks the dopamine transporter) but with lower abuse potential owing to slower rates of clearance from the synapse.

Non-contingent administration

Administration of a certain drug that is not dependent on the subject's behaviour.

Fixed-rate self-administration

Self-administration of a certain drug on a ratio between drug delivery and behaviour that is fixed by an experimenter (for example, after emission of a certain number of responses or after a certain time has elapsed following the previous response).

Arterial spin labelling

(Also known as arterial spin tagging). An MRI technique that is capable of measuring cerebral blood flow in vivo. It provides cerebral perfusion maps without requiring the administration of a contrast agent or the use of ionizing radiation, as it uses magnetically labelled endogenous blood water as a freely diffusible tracer.

Masked cue

A cue that is presented below conscious processing level (that is, outside of conscious awareness). This is usually achieved with a very short duration of cue presentation followed by presentation of another cue that is consciously perceived (longer duration).

Ketamine

An NMDA receptor antagonist primarily used for the induction and maintenance of general anaesthesia. In addition, it can induce analgesia, elevated blood pressure and hallucinations, and it has been used as a recreational drug.

[11C]carfentanil

A positron emission tomography (PET) receptor radioligand that competes with endogenous opiates for binding to the mu opiate receptor.

Affect matching

A neuropsychological test in which images of faces are matched based on their emotional facial expressions. This task can be used to assess impairments in emotional (or social) processing.

Go/no-go task

A neuropsychological task that is commonly used to assess inhibitory control. Subjects are required to press a button when one stimulus type appears and withhold a response when another stimulus type appears.

Stop signal reaction time task

(SSRT). A neuropsychological test that measures the ability to stop a response that has already been initiated. It is used clinically as an index of inhibitory control. Slower SSRT is associated with disruption of executive functions.

Errors of omission and commission

Errors on a go/no-go task: a subject had to go but they did not go (omission of a response) or had to withhold a response but pressed a button instead (commission of an unnecessary response). The former is an index of inattentiveness while the latter is an index of impulsive (premature) responding.

Stroop task

A neuropsychological task in which conflict is created between an automatic response (for example, reading) and a slower response (for example, colour naming), with both competing for the same processing resources. Impaired performance on Stroop tasks is associated with prefrontal cortex dysfunction.

Alexithymia

A state of deficiency in understanding, processing or describing emotions, including the difficulty in identifying and/or describing one's own feelings and externally oriented thinking.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldstein, R., Volkow, N. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci 12, 652–669 (2011). https://doi.org/10.1038/nrn3119

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing