Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Emotion processing and the amygdala: from a 'low road' to 'many roads' of evaluating biological significance

Abstract

A subcortical pathway through the superior colliculus and pulvinar to the amygdala is commonly assumed to mediate the non-conscious processing of affective visual stimuli. We review anatomical and physiological data that argue against the notion that such a pathway plays a prominent part in processing affective visual stimuli in humans. Instead, we propose that the primary role of the amygdala in visual processing, like that of the pulvinar, is to coordinate the function of cortical networks during evaluation of the biological significance of affective visual stimuli. Under this revised framework, the cortex has a more important role in emotion processing than is traditionally assumed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visual pathways.
Figure 2: Intact non-conscious processing of fearful faces in the absence of the amygdala.
Figure 3: Schematic layout of the pulvinar.
Figure 4: Pulvinar and amygdala during processing of affective stimuli.

Similar content being viewed by others

References

  1. Tamietto, M. & de Gelder, B. Neural bases of the non-conscious perception of emotional signals. Nature Rev. Neurosci. 11, 697–709 (2010).

    CAS  Google Scholar 

  2. Ohman, A. & Mineka, S. Fears, phobias, and preparedness: toward an evolved module of fear and fear learning. Psychol. Rev. 108, 483–522 (2001).

    CAS  PubMed  Google Scholar 

  3. Lonsdorf, T. B. et al. Genetic gating of human fear learning and extinction: possible implications for gene–environment interaction in anxiety disorder. Psychol. Sci. 20, 198–206 (2009).

    PubMed  Google Scholar 

  4. LeDoux, J. E. The Emotional Brain (Simon & Schuster, New York, 1996).

    Google Scholar 

  5. Dolan, R. J. & Vuilleumier, P. Amygdala automaticity in emotional processing. Ann. NY Acad. Sci. 985, 348–355 (2003).

    CAS  PubMed  Google Scholar 

  6. Ohman, A., Lundqvist, D. & Esteves, F. The face in the crowd revisited: a threat advantage with schematic stimuli. J. Pers. Soc. Psychol. 80, 381–396 (2001).

    CAS  PubMed  Google Scholar 

  7. Yang, E., Zald, D. H. & Blake, R. Fearful expressions gain preferential access to awareness during continuous flash suppression. Emotion 7, 882–886 (2007).

    PubMed  PubMed Central  Google Scholar 

  8. Morris, J. S., Ohman, A. & Dolan, R. J. Conscious and unconscious emotional learning in the human amygdala. Nature 393, 467–470 (1998).

    CAS  PubMed  Google Scholar 

  9. Whalen, P. J. et al. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J. Neurosci. 18, 411–418 (1998).

    CAS  PubMed  Google Scholar 

  10. Morris, J. S., DeGelder, B., Weiskrantz, L. & Dolan, R. J. Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field. Brain 124, 1241–1252 (2001).

    CAS  PubMed  Google Scholar 

  11. Pegna, A. J., Khateb, A., Lazeyras, F. & Seghier, M. L. Discriminating emotional faces without primary visual cortices involves the right amygdala. Nature Neurosci. 8, 24–25 (2005).

    CAS  PubMed  Google Scholar 

  12. Morris, J. S., Ohman, A. & Dolan, R. J. A subcortical pathway to the right amygdala mediating “unseen” fear. Proc. Natl Acad. Sci. USA 96, 1680–1685 (1999).

    CAS  PubMed  Google Scholar 

  13. Bar, M. & Neta, M. Humans prefer curved visual objects. Psychol. Sci. 17, 645–648 (2006).

    PubMed  Google Scholar 

  14. Vuilleumier, P., Armony, J. L., Driver, J. & Dolan, R. J. Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature Neurosci. 6, 624–631 (2003).

    CAS  PubMed  Google Scholar 

  15. Davis, M. & Whalen, P. J. The amygdala: vigilance and emotion. Mol. Psychiatry 6, 13–34 (2001).

    CAS  PubMed  Google Scholar 

  16. Whalen, P. J. & Phelps, E. A. (eds) The Human Amygdala (Guilford Press, New York, 2009).

    Google Scholar 

  17. Lewis, M. D. Bridging emotion theory and neurobiology through dynamic systems modeling. Behav. Brain Sci. 28, 169–245 (2005).

    PubMed  Google Scholar 

  18. Duncan, S. & Barrett, L. F. Affect is a form of cognition: a neurobiological analysis. Cogn. Emot. 21, 1184–1211 (2007).

    PubMed  PubMed Central  Google Scholar 

  19. Pessoa, L. On the relationship between emotion and cognition. Nature Rev. Neurosci. 9, 148–158 (2008).

    CAS  Google Scholar 

  20. Pessoa, L. To what extent are emotional visual stimuli processed without attention and awareness? Curr. Opin. Neurobiol. 15, 188–196 (2005).

    CAS  PubMed  Google Scholar 

  21. Adolphs, R. Fear, faces, and the human amygdala. Curr. Opin. Neurobiol. 18, 166–172 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pizzagalli, D., Regard, M. & Lehmann, D. Rapid emotional face processing in the human right and left brain hemispheres: an ERP study. Neuroreport 10, 2691–2698 (1999).

    CAS  PubMed  Google Scholar 

  23. Halgren, E., Raij, T., Marinkovic, K., Jousmaki, V. & Hari, R. Cognitive response profile of the human fusiform face area as determined by MEG. Cereb. Cortex 10, 69–81 (2000).

    CAS  PubMed  Google Scholar 

  24. Eger, E., Jedynak, A., Iwaki, T. & Skrandies, W. Rapid extraction of emotional expression: evidence from evoked potential fields during brief presentation of face stimuli. Neuropsychologia 41, 808–817 (2003).

    CAS  PubMed  Google Scholar 

  25. Japee, S., Crocker, L., Carver, F., Pessoa, L. & Ungerleider, L. G. Individual differences in valence modulation of face-selective M170 response. Emotion 9, 59–69 (2009).

    PubMed  PubMed Central  Google Scholar 

  26. Krolak-Salmon, P., Henaff, M. A., Vighetto, A., Bertrand, O. & Mauguiere, F. Early amygdala reaction to fear spreading in occipital, temporal, and frontal cortex: a depth electrode ERP study in human. Neuron 42, 665–676 (2004).

    CAS  PubMed  Google Scholar 

  27. Greene, M. R. & Oliva, A. The briefest of glances: the time course of natural scene understanding. Psychol. Sci. 20, 464–472 (2009).

    PubMed  PubMed Central  Google Scholar 

  28. Kawasaki, H. et al. Single-neuron responses to emotional visual stimuli recorded in human ventral prefrontal cortex. Nature Neurosci. 4, 15–16 (2001).

    CAS  PubMed  Google Scholar 

  29. Amaral, D. G., Price, J. L., Pitkanen, A. & Carmichael, S. T. in The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (ed. Aggleton, J.) 1–66 (Wiley-Liss, New York, 1992).

    Google Scholar 

  30. Gothard, K. M., Battaglia, F. P., Erickson, C. A., Spitler, K. M. & Amaral, D. G. Neural responses to facial expression and face identity in the monkey amygdala. J. Neurophysiol. 97, 1671–1683 (2007).

    CAS  PubMed  Google Scholar 

  31. Rolls, E. T. Emotion Explained (Oxford Univ. Press, Oxford, 2005).

    Google Scholar 

  32. Kreiman, G., Koch, C. & Fried, I. Category-specific visual responses of single neurons in the human medial temporal lobe. Nature Neurosci. 3, 946–953 (2000).

    CAS  PubMed  Google Scholar 

  33. Mormann, F. et al. Latency and selectivity of single neurons indicate hierarchical processing in the human medial temporal lobe. J. Neurosci. 28, 8865–8872 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Smith, M. L., Cottrell, G. W., Gosselin, F. & Schyns, P. G. Transmitting and decoding facial expressions. Psychol. Sci. 16, 184–189 (2005).

    PubMed  Google Scholar 

  35. Smith, F. W. & Schyns, P. G. Smile through your fear and sadness: transmitting and identifying facial expression signals over a range of viewing distances. Psychol. Sci. 20, 1202–1208 (2009).

    PubMed  Google Scholar 

  36. Adolphs, R. et al. A mechanism for impaired fear recognition after amygdala damage. Nature 433, 68–72 (2005).

    CAS  PubMed  Google Scholar 

  37. Vuilleumier, P. How brains beware: neural mechanisms of emotional attention. Trends Cogn. Sci. 9, 585–594 (2005).

    PubMed  Google Scholar 

  38. Pessoa, L., Oliveira, L. & Pereira, M. G. Attention and emotion. Scholarpedia 5, 6314 (2010).

    Google Scholar 

  39. Pessoa, L., Oliveira, L. & Pereira, M. G. in Handbook of Human Affective Neuroscience (eds Armony, J. L. & Vuilleumier, P.) (Cambridge Univ. Press, Cambridge, UK, 2011).

    Google Scholar 

  40. Tsuchiya, N., Moradi, F., Felsen, C., Yamazaki, M. & Adolphs, R. Intact rapid detection of fearful faces in the absence of the amygdala. Nature Neurosci. 12, 1224–1225 (2009).

    CAS  PubMed  Google Scholar 

  41. Piech, R. M. et al. Fear-enhanced visual search persists after amygdala lesions. Neuropsychologia. 48, 3430–3435 (2010).

    PubMed  PubMed Central  Google Scholar 

  42. Grieve, K. L., Acuna, C. & Cudeiro, J. The primate pulvinar nuclei: vision and action. Trends Neurosci. 23, 35–39 (2000).

    CAS  PubMed  Google Scholar 

  43. Stepniewska, I. in The Primate Visual System (eds Kaas, J. & Collins, C. E.) 53–80 (CRC Press, Boca Raton, Florida, 2004).

    Google Scholar 

  44. Bender, D. B. Visual activation of neurons in the primate pulvinar depends on cortex but not colliculus. Brain Res. 279, 258–261 (1983).

    CAS  PubMed  Google Scholar 

  45. Robinson, D. L. & Cowie, R. J. in The Thalamus (ed. McCormick, D.) 53–92 (Elsevier, New York, 1997).

    Google Scholar 

  46. de Gelder, B. et al. Standing up for the body. Recent progress in uncovering the networks involved in the perception of bodies and bodily expressions. Neurosci. Biobehav. Rev. 34, 513–527 (2010).

    PubMed  Google Scholar 

  47. Guillery, R. W. Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. J. Anat. 187, 583–592 (1995).

    PubMed  PubMed Central  Google Scholar 

  48. Sherman, S. M. & Guillery, R. W. Functional organization of thalamocortical relays. J. Neurophysiol. 76, 1367–1395 (1996).

    CAS  PubMed  Google Scholar 

  49. Sherman, S. M. Thalamus. Scholarpedia 1, 1583 (2006).

    Google Scholar 

  50. Ungerleider, L. G. & Christensen, C. A. Pulvinar lesions in monkeys produce abnormal scanning of a complex visual array. Neuropsychologia 17, 493–501 (1979).

    CAS  PubMed  Google Scholar 

  51. Zihl, J. & von Cramon, D. The contribution of the 'second' visual system to directed visual attention in man. Brain 102, 835–856 (1979).

    CAS  PubMed  Google Scholar 

  52. Benevento, L. A. & Port, J. D. Single neurons with both form/color differential responses and saccade-related responses in the nonretinotopic pulvinar of the behaving macaque monkey. Vis. Neurosci. 12, 523–544 (1995).

    CAS  PubMed  Google Scholar 

  53. Petersen, S. E., Robinson, D. L. & Keys, W. Pulvinar nuclei of the behaving rhesus monkey: visual responses and their modulation. J. Neurophysiol. 54, 867–886 (1985).

    CAS  PubMed  Google Scholar 

  54. Desimone, R., Wessinger, M., Thomas, L. & Schneider, W. Attentional control of visual perception: cortical and subcortical mechanisms. Cold Spring Harb. Symp. Quant. Biol. 55, 963–971 (1990).

    CAS  PubMed  Google Scholar 

  55. Karnath, H. O., Himmelbach, M. & Rorden, C. The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. Brain 125, 350–360 (2002).

    PubMed  Google Scholar 

  56. Ward, R., Danziger, S., Owen, V. & Rafal, R. Deficits in spatial coding and feature binding following damage to spatiotopic maps in the human pulvinar. Nature Neurosci. 5, 99–100 (2002).

    CAS  PubMed  Google Scholar 

  57. Wilke, M., Mueller, K. M. & Leopold, D. A. Neural activity in the visual thalamus reflects perceptual suppression. Proc. Natl Acad. Sci. USA 106, 9465–9470 (2009).

    CAS  PubMed  Google Scholar 

  58. Padmala, S., Lim, S.-L. & Pessoa, L. Pulvinar and affective significance: responses track moment-to-moment visibility. Front. Hum. Neurosci. 4, 1–9 (2010).

    Google Scholar 

  59. Pessoa, L. & Ungerleider, L. G. Neural correlates of change detection and change blindness in a working memory task. Cereb. Cortex 14, 511–520 (2004).

    PubMed  Google Scholar 

  60. Shipp, S. The functional logic of cortico-pulvinar connections. Phil. Trans. R. Soc. Lond. B 358, 1605–1624 (2003).

    CAS  Google Scholar 

  61. Lyon, D. C., Nassi, J. J. & Callaway, E. M. A disynaptic relay from superior colliculus to dorsal stream visual cortex in macaque monkey. Neuron 65, 270–279 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Berman, R. A. & Wurtz, R. H. Functional identification of a pulvinar path from superior colliculus to cortical area MT. J. Neurosci. 30, 6342–6354 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Shipp, S. The brain circuitry of attention. Trends Cogn. Sci. 8, 223–230 (2004).

    PubMed  Google Scholar 

  64. Jones, E. G. & Burton, H. A projection from the medial pulvinar to the amygdala in primates. Brain Res. 104, 142–147 (1976).

    CAS  PubMed  Google Scholar 

  65. Romanski, L. M., Giguere, M., Bates, J. F. & Goldman-Rakic, P. S. Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 379, 313–332 (1997).

    CAS  PubMed  Google Scholar 

  66. Aggleton, J. P., Burton, M. J. & Passingham, R. E. Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res. 190, 347–368 (1980).

    CAS  PubMed  Google Scholar 

  67. Sherman, S. M. & Guillery, R. W. Exploring the Thalamus. (Academic Press, San Diego, 2001).

    Google Scholar 

  68. Cowey, A. The 30th Sir Frederick Bartlett lecture. Fact, artefact, and myth about blindsight. Q. J. Exp. Psychol. A 57, 577–609 (2004).

    PubMed  Google Scholar 

  69. Chen, C. M. et al. Functional anatomy and interaction of fast and slow visual pathways in macaque monkeys. Cereb. Cortex 17, 1561–1569 (2007).

    PubMed  Google Scholar 

  70. Nakamura, H., Gattass, R., Desimone, R. & Ungerleider, L. G. The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques. J. Neurosci. 13, 3681–3691 (1993).

    CAS  PubMed  Google Scholar 

  71. Felleman, D. J. & Van Essen, D. C. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 1, 1–47 (1991).

    CAS  PubMed  Google Scholar 

  72. Lamme, V. A. & Roelfsema, P. R. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci. 23, 571–579 (2000).

    CAS  PubMed  Google Scholar 

  73. Yukie, M. & Iwai, E. Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in macaque monkeys. J. Comp. Neurol. 201, 81–97 (1981).

    CAS  PubMed  Google Scholar 

  74. Bullier, J. & Kennedy, H. Projection of the lateral geniculate nucleus onto cortical area V2 in the macaque monkey. Exp. Brain Res. 53, 168–172 (1983).

    CAS  PubMed  Google Scholar 

  75. Schmid, M. C., Panagiotaropoulos, T., Augath, M. A., Logothetis, N. K. & Smirnakis, S. M. Visually driven activation in macaque areas V2 and V3 without input from the primary visual cortex. PLoS ONE 4, e5527 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. Boyer, J. L., Harrison, S. & Ro, T. Unconscious processing of orientation and color without primary visual cortex. Proc. Natl Acad. Sci. USA 102, 16875–16879 (2005).

    CAS  PubMed  Google Scholar 

  77. Schmid, M. C. et al. Blindsight depends on the lateral geniculate nucleus. Nature 466, 373–377 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Rempel-Clower, N. L. & Barbas, H. The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. Cereb. Cortex 10, 851–865 (2000).

    CAS  PubMed  Google Scholar 

  79. Bar, M. A cortical mechanism for triggering top-down facilitation in visual object recognition. J. Cogn. Neurosci. 15, 600–609 (2003).

    PubMed  Google Scholar 

  80. Bullier, J. Integrated model of visual processing. Brain Res. Brain Res. Rev. 36, 96–107 (2001).

    CAS  PubMed  Google Scholar 

  81. Kveraga, K., Boshyan, J. & Bar, M. Magnocellular projections as the trigger of top–down facilitation in recognition. J. Neurosci. 27, 13232–13240 (2007).

    CAS  PubMed  Google Scholar 

  82. Barrett, L. F. & Bar, M. See it with feeling: affective predictions during object perception. Phil. Trans. R. Soc. Lond. B 364, 1325–1334 (2009).

    CAS  Google Scholar 

  83. Capalbo, M., Postma, E. & Goebel, R. Combining structural connectivity and response latencies to model the structure of the visual system. PLoS Comput. Biol. 4, e1000159 (2008).

    PubMed  PubMed Central  Google Scholar 

  84. Nowak, L. G. & Bullier, J. in Cerebral Cortex: Extrastriate Cortex in Primate (eds Rockland, K., Kass, J. & Peters, A.) 205–241 (Plenum, New York, 1997).

    Google Scholar 

  85. Sugase, Y., Yamane, S., Ueno, S. & Kawano, K. Global and fine information coded by single neurons in the temporal visual cortex. Nature 400, 142–147 (1999).

    Google Scholar 

  86. Sripati, A. P. & Olson, C. R. Representing the forest before the trees: a global advantage effect in monkey inferotemporal cortex. J. Neurosci. 29, 7788–7796 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Rudrauf, D. et al. Rapid interactions between the ventral visual stream and emotion-related structures rely on a two-pathway architecture. J. Neurosci. 28, 2793–2803 (2008).

    CAS  PubMed  Google Scholar 

  88. Andino, S. L., Menendez, R. G., Khateb, A., Landis, T. & Pegna, A. J. Electrophysiological correlates of affective blindsight. Neuroimage 44, 581–589 (2009).

    PubMed  Google Scholar 

  89. Rotshtein, P. et al. Amygdala damage affects event-related potentials for fearful faces at specific time windows. Hum. Brain Mapp. 31, 1089–1105 (2010).

    PubMed  Google Scholar 

  90. Ward, R., Calder, A. J., Parker, M. & Arend, I. Emotion recognition following human pulvinar damage. Neuropsychologia 45, 1973–1978 (2007).

    PubMed  Google Scholar 

  91. Ward, R., Danziger, S. & Bamford, S. Response to visual threat following damage to the pulvinar. Curr. Biol. 15, 571–573 (2005).

    CAS  PubMed  Google Scholar 

  92. Vuilleumier, P., Richardson, M. P., Armony, J. L., Driver, J. & Dolan, R. J. Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nature Neurosci. 7, 1271–1278 (2004).

    CAS  PubMed  Google Scholar 

  93. Ghashghaei, H. T., Hilgetag, C. C. & Barbas, H. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage 34, 905–923 (2007).

    CAS  PubMed  Google Scholar 

  94. Averbeck, B. B. & Seo, M. The statistical neuroanatomy of frontal networks in the macaque. PLoS Comput. Biol. 4, e1000050 (2008).

    PubMed  PubMed Central  Google Scholar 

  95. Modha, D. S. & Singh, R. Network architecture of the long-distance pathways in the macaque brain. Proc. Natl Acad. Sci. USA 107, 13485–13490 (2010).

    CAS  PubMed  Google Scholar 

  96. Lim, S. L., Padmala, S. & Pessoa, L. Segregating the significant from the mundane on a moment-to-moment basis via direct and indirect amygdala contributions. Proc. Natl Acad. Sci. USA 106, 16841–16846 (2009).

    CAS  PubMed  Google Scholar 

  97. Whalen, P. J. Fear, vigilance, and ambiguity: initial neuroimaging studies of the human amygdala. Curr. Dir. Psychol.Sci. 7, 177–188 (1998).

    Google Scholar 

  98. Sander, D., Grafman, J. & Zalla, T. The human amygdala: an evolved system for relevance detection. Rev. Neurosci. 14, 303–316 (2003).

    PubMed  Google Scholar 

  99. Hsu, M., Bhatt, M., Adolphs, R., Tranel, D. & Camerer, C. F. Neural systems responding to degrees of uncertainty in human decision-making. Science 310, 1680–1683 (2005).

    CAS  PubMed  Google Scholar 

  100. Pessoa, L. Emotion and cognition and the amygdala: from “what is it?” to “what's to be done?” Neuropsychologia 48, 3416–3429 (2010).

    PubMed  PubMed Central  Google Scholar 

  101. Grossberg, S. & Levine, D. S. Neural dynamics of attentionally modulated Pavlovian conditioning: blocking, interstimulus interval, and secondary reinforcement. Appl. Opt. 26, 5015–5030 (1987).

    CAS  PubMed  Google Scholar 

  102. Aggleton, J. P. (ed.) The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (John Wiley & Sons, New York, 1992).

    Google Scholar 

  103. Aggleton, J. (ed.) The Amygdala: A Functional Analysis (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  104. Ouellette, B. G. & Casanova, C. Overlapping visual response latency distributions in visual cortices and LP-pulvinar complex of the cat. Exp. Brain Res. 175, 332–341 (2006).

    PubMed  Google Scholar 

  105. Schmolesky, M. T. et al. Signal timing across the macaque visual system. J. Neurophysiol. 79, 3272–3278 (1998).

    CAS  PubMed  Google Scholar 

  106. Boehnke, S. E. & Munoz, D. P. On the importance of the transient visual response in the superior colliculus. Curr. Opin. Neurobiol. 18, 544–551 (2008).

    CAS  PubMed  Google Scholar 

  107. Leonard, C. M., Rolls, E. T., Wilson, F. A. & Baylis, G. C. Neurons in the amygdala of the monkey with responses selective for faces. Behav. Brain Res. 15, 159–176 (1985).

    CAS  PubMed  Google Scholar 

  108. Kuraoka, K. & Nakamura, K. Responses of single neurons in monkey amygdala to facial and vocal emotions. J. Neurophysiol. 97, 1379–1387 (2007).

    PubMed  Google Scholar 

  109. Nakamura, K., Mikami, A. & Kubota, K. Activity of single neurons in the monkey amygdala during performance of a visual discrimination task. J. Neurophysiol. 67, 1447–1463 (1992).

    CAS  PubMed  Google Scholar 

  110. Oya, H., Kawasaki, H., Howard, M. A. & Adolphs, R. Electrophysiological responses in the human amygdala discriminate emotion categories of complex visual stimuli. J. Neurosci. 22, 9502–9512 (2002).

    CAS  PubMed  Google Scholar 

  111. Tovee, M. J. & Rolls, E. T. Information encoding in short firing rate epochs by single neurons in the primate temporal visual cortex. Vis. Cogn. 2, 35–58 (1995).

    Google Scholar 

  112. Yoshor, D., Bosking, W. H., Ghose, G. M. & Maunsell, J. H. Receptive fields in human visual cortex mapped with surface electrodes. Cereb. Cortex 17, 2293–2302 (2007).

    PubMed  Google Scholar 

  113. King, A. J. & Nelken, I. Unraveling the principles of auditory cortical processing: can we learn from the visual system? Nature Neurosci. 12, 698–701 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Anticevic, L. Oliveira, M. Pereira, R. Todd, and S. Wang for feedback on the manuscript. They also thank L. Barrett and two anonymous reviewers for comments. The authors' research is supported by grants from the National Institute of Mental Health (R01 MH071589 to L.P. and R01 MH080721 to R.A.), the National Institute of Neurological Disorders and Stroke (P01 NS019632 to R.A.), the Simons Foundation Autism Research Initiative and the National Science Foundation (NSF 0926,544).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luiz Pessoa or Ralph Adolphs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Luiz Pessoa's homepage

Ralph Adolphs' homepage

Glossary

Attentional blink

A phenomenon that occurs in experiments in which a rapid stream of visual items is presented to an observer whose task is to detect two targets within the stream. When the two targets are separated in time by a brief interval (for example, 200–500ms), the successful detection of the first target impairs detection of the second one (as if the participant blinked) owing to limited processing capacity.

Backward masking

A phenomenon that occurs in experimental paradigms in which a target visual stimulus is followed by another salient visual stimulus that 'masks' the perception of the target stimulus, making its detection or recognition difficult or impossible. Visual masking is commonly used to manipulate visual awareness.

Blindsight

The ability, in humans or monkeys, to respond to visual stimuli without consciously perceiving them — a situation that may ensue following a lesion to the primary visual cortex.

Continuous flash suppression

A technique in which a fixed image shown to one eye is suppressed by a stream of rapidly changing images flashed to the other eye. The technique is used to manipulate visual awareness.

Labelled line

A processing architecture in which a separate pathway conveys information that is specific to a class of sensory stimuli owing to, for example, receptor specificity (for example, pain and touch conveyed by particular somatosensory channels).

Magnocellular system

A visual pathway from the retina to the cortex that conveys relatively fast, transient and wavelength-insensitive information.

Path analysis

A statistical method to investigate the relationship between multiple variables.

Source modelling

A set of techniques that attempt to estimate the neural 'sources' of the electrical or magnetic signals that are measured at external sensors (for example, at the scalp in the case of electroencephalography).

Visual search

An experimental paradigm in which subjects are asked to indicate the presence or absence of a 'target' item (for example, a fearful face) among an array of distractor items (for example, neutral faces).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pessoa, L., Adolphs, R. Emotion processing and the amygdala: from a 'low road' to 'many roads' of evaluating biological significance. Nat Rev Neurosci 11, 773–782 (2010). https://doi.org/10.1038/nrn2920

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2920

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing