Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microorganisms and climate change: terrestrial feedbacks and mitigation options

Key Points

  • Microorganisms are the most diverse and dominant organisms on the planet and are vital for ecosystem functioning. However, most of them cannot yet be cultured in the laboratory.

  • Microbial processes have a central role in the global fluxes of the key greenhouse gases carbon dioxide, methane and nitrous oxide, and these processes are likely to respond rapidly to climate change.

  • An improved mechanistic understanding of microbial controls of terrestrial greenhouse gas fluxes is essential to improve the prediction of climate models.

  • New and emerging molecular tools are now available to quantify the diversity of uncultivable microorganisms and their metabolic processes, which will help to improve our manipulation of their feedback responses to climate change.

  • There is huge potential to manage and manipulate microbial processes to mitigate climate change by reducing greenhouse gas emissions from terrestrial ecosystems.

  • To achieve this, an interdisciplinary approach is required that includes microbial ecology, environmental genomics, soil and plant science, and ecosystem modelling.

Abstract

Microbial processes have a central role in the global fluxes of the key biogenic greenhouse gases (carbon dioxide, methane and nitrous oxide) and are likely to respond rapidly to climate change. Whether changes in microbial processes lead to a net positive or negative feedback for greenhouse gas emissions is unclear. To improve the prediction of climate models, it is important to understand the mechanisms by which microorganisms regulate terrestrial greenhouse gas flux. This involves consideration of the complex interactions that occur between microorganisms and other biotic and abiotic factors. The potential to mitigate climate change by reducing greenhouse gas emissions through managing terrestrial microbial processes is a tantalizing prospect for the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Greenhouse gas fluxes.
Figure 2: A simplistic conceptual model to illustrate complex feedbacks caused by climate change.
Figure 3: A proposed framework for future research on climate change and ecological responses.

Similar content being viewed by others

References

  1. Schopf, J. W. & Packer, B. M. Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237, 70–73 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Bartdorff, O. Wallmann, K., Latif, M. and Semenov, V. Phanerozoic evolution of atmospheric methane. Global Biogeochem. Cycles 22, GB1008 (2008).

    Article  CAS  Google Scholar 

  3. Bardgett, R. D., Freeman, C. & Ostle, N. J. Microbial contributions to climate change through carbon cycle feedbacks. ISME J. 2, 2805–2814 (2008). This paper highlights the central role of soil microorganisms in land–atmosphere carbon exchange and its consequences for climate change.

    Article  CAS  Google Scholar 

  4. Drigo, B., Kowalchuk, G. A. & van Veen, J. A. Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol. Fertil. Soils 44, 667–679 (2008).

    Article  Google Scholar 

  5. Prentice, I. C. et al. A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr. 19, 117–134 (1992).

    Article  Google Scholar 

  6. Woodward, F. I., Lomas, M. R. & Kelly, C. K. Global climate and the distribution of plant biomes. Phil. Trans. R. Soc. Lond. B Biol. Sci. 359, 1465–1476 (2004).

    Article  CAS  Google Scholar 

  7. Philips, D. A., Fox, T. C., & Six, J. Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO2 . Glob. Chang. Biol. 12, 561–567 (2006).

    Article  Google Scholar 

  8. Rillig, M. C., Hernandez, G. Y. & Newton, P. C. D. Arbuscular mycorrhizae respond to elevated atmospheric CO2 after long-term exposure: evidence from a CO2 spring in New Zealand supports the resource balance model. Ecol. Lett. 3, 475–478 (2000).

    Article  Google Scholar 

  9. Staddon, P. L., Jakobsen, I. & Blum, H. Nitrogen input mediates the effect of free-air CO2 enrichment on mycorrhizal fungal abundance. Glob. Chang. Biol. 10, 1678–1688 (2004).

    Article  Google Scholar 

  10. Morgan, J. A. Looking beneath the surface. Science 298, 1903–1904 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Horner-Devine, M. C., Lage, M., Hughes, J. B. & Bohannan, B. J. M. A taxa–area relationship for bacteria. Nature 432, 750–753 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Green, J. L. et al. Spatial scaling of microbial eukaryote diversity. Nature 432, 747–750 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Schimel, J. P. & Gulledge, J. Microbial community structure and global trace gases. Glob. Chang. Biol. 4, 745–758 (1998).

    Article  Google Scholar 

  14. Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nature Geosci. 3, 336–340 (2010). This article provides evidence that the efficiency of soil microorganisms in using carbon determines the soil carbon response to climate change.

    Article  CAS  Google Scholar 

  15. Schimel, J. in Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences (eds Chapin, F. S. III & Körner, C.) 239–254 (Springer, Berlin, 1995).

    Google Scholar 

  16. Del Giorgio, P. A. & Duarte, C. M. Respiration in the open ocean. Nature 420, 379–384 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Arrigo, K. Marine microorganisms and global nutrient cycles. Nature 437, 349–355 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).

    Article  PubMed  Google Scholar 

  19. Hymus, G. & Valentini, R. in Greenhouse Gas Sinks (eds Reay, D. S. et al.) 11–30 (CABI Publishing, Oxfordshire, 2007).

    Book  Google Scholar 

  20. Reay, D. S. & Grace, J. Cin Greenhouse Gas Sinks (eds Reay, D. S. et al.) 1–10 (CABI Publishing, Oxfordshire, 2007).

    Book  Google Scholar 

  21. Intergovernmental Panel on Climate Change. Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) (Cambridge Univ. Press, Cambridge, UK, 2007).

  22. Smith, P. et al. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B Biol. Sci. 363, 789–813 (2008).

    Article  CAS  Google Scholar 

  23. Smith, P. Land use change and soil organic carbon dynamics. Nutr. Cycl. Agroecosyst. 81, 169–178 (2008).

    Article  Google Scholar 

  24. Lal, R. Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Prog. Environ. Sci. 1, 307–326 (1999).

    CAS  Google Scholar 

  25. Carney, K. M., Hungate, B. A., Drake, B. G. & Megonigal, J. P. Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc. Natl Acad. Sci. USA 104, 4990–4995 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reay, D. S. Sinking methane. Biologist 50, 15–19 (2003).

    PubMed  Google Scholar 

  27. Intergovernmental Panel on Climate Change. 2006 IPCC Guidelines for National Greenhouse Gas Inventories (eds Eggleston, H. S. et al.) (Institute for Global Environmental Strategies, Hayama, 2006).

  28. Crutzen, P. J. et al. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. Discuss. 7, 11191–11205 (2007).

    Article  Google Scholar 

  29. Teske, A. et al. Evolutionary relationships among ammonia-oxidizing and nitrite-oxidizing bacteria. J. Bacteriol. 176, 6623–6630 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Ye, R. W., Averill, B. A. & Tiedje, J. M. Denitrification: production and consumption of nitric-oxide. Appl. Environ. Microbiol. 60, 1053–1058 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Salles, J. F., Poly, F., Schmid, B. & Le Roux, X. Community niche predicts the functioning of denitrifying bacterial assemblages. Ecology 90, 3324–3332 (2009).

    Article  PubMed  Google Scholar 

  33. Bardgett, R. D. & Wardle, D. A. Aboveground–Belowground Linkages (Oxford Univ. Press, Oxford, UK, 2010).

    Google Scholar 

  34. Smith, P. et al. Soil biota and global change at the ecosystem level: describing soil biota in mathematical models. Glob. Chang. Biol. 4, 773–784 (1998).

    Article  Google Scholar 

  35. Bardgett, R. D., De Deyn, G. B. & Ostle, N. J. Plant–soil interactions and the carbon cycle. J. Ecol. 97, 838–839 (2009).

    Article  Google Scholar 

  36. Diaz, S., Grime, J. P., Harris, J. & Mcpherson, E. Evidence of a feedback mechanism limiting plant-response to elevated carbon-dioxide. Nature 364, 616–617 (1993).

    Article  CAS  Google Scholar 

  37. de Graaff, M. A., van Groenigen, K. J., Six, J., Hungate, B. & van Kessel, C. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob. Chang. Biol. 12, 2077–2091 (2006).

    Article  Google Scholar 

  38. Zak, D. R. et al. Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151, 105–117 (1993).

    Article  CAS  Google Scholar 

  39. French, S. et al. Elevated temperatures and carbon dioxide concentrations: effects on selected microbial activities in temperate agricultural soils. World J. Microbiol. Biotechnol. 25, 1887–1900 (2009).

    Article  CAS  Google Scholar 

  40. Six, J., Frey, S. D., Thiet, R. K. & Batten, K. M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70, 555–569 (2006). This paper provides an in-depth discussion on the contribution of soil microorganisms to carbon sequestration and suggests mechanisms by which carbon sequestration could be better managed.

    Article  CAS  Google Scholar 

  41. Janssens, I. A. & Luyssaert, S. Nitrogen's carbon bonus. Nature Geosci. 2, 318–319 (2009).

    Article  CAS  Google Scholar 

  42. Reay, D., Sabine, C., Smith, P. & Hymus, G. Spring-time for sinks. Nature 446, 727–728 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Korner, C. & Arnone, J. A. Responses to elevated carbon-dioxide in artificial tropical ecosystems. Science 257, 1672–1675 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Hungate, B. A. et al. The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388, 576–579 (1997).

    Article  CAS  Google Scholar 

  45. Norby, R. J., Ledford, J., Reilly, C. D., Miller, N. E. & O'Neill, E. G. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proc.Natl Acad. Sci. USA 101, 9689–9693 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jackson, R., Cook, C., Pippen, J. & Palmer, S. Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest. Ecology 90, 3352–3366 (2009).

    Article  PubMed  Google Scholar 

  47. Balser, T. C. & Wixon, D. L. Investigating biological control over soil carbon temperature sensitivity. Glob. Chang. Biol. 15, 2935–2949 (2009).

    Article  Google Scholar 

  48. Schuur, E. A. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Zimov, S. A., Schuur, E. A. G. & Chapin, F. S. III. Permafrost and the global carbon budget. Science 312, 1612–1613 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Pendall, E. et al. Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytol. 162, 311–322 (2004).

    Article  Google Scholar 

  51. Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006). This review provides a detailed discussion on the temperature sensitivity of soil carbon decomposition and identifies research challenges to address this.

    Article  CAS  PubMed  Google Scholar 

  53. Bergner, B., Johnstone, J. & Treseder, K. K. Experimental warming and burn severity alter soil CO2 flux and soil functional groups in a recently burned boreal forest. Glob. Chang. Biol. 10, 1996–2004 (2004).

    Article  Google Scholar 

  54. Rustad, L. E. et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543–562 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Dorrepaal, E. et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460, 616–619 (2009).

    Article  CAS  Google Scholar 

  56. Smith, P. & Fang, C. M. Carbon cycle: A warm response by soils. Nature 464, 499–500 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Monson, R. K. et al. Winter forest soil respiration controlled by climate and microbial community composition. Nature 439, 711–714 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Allison, S. D. & Treseder, K. K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob. Chang. Biol. 14, 2898–2909 (2008).

    Article  Google Scholar 

  59. Hartley, I. P., Heinemeyer, A. & Ineson, P. Effects of three years of soil warming and shading on the rate of soil respiration: substrate availability and not thermal acclimation mediates observed response. Glob. Chang. Biol. 13, 1761–1770 (2007).

    Article  Google Scholar 

  60. Bradford, M. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).

    Article  PubMed  Google Scholar 

  61. Rinnan, R., Michelsen, A., Baath, E. & Jonasson, S. Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Glob. Chang. Biol. 13, 28–39 (2007).

    Article  Google Scholar 

  62. Kirschbaum, M. U. F. Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Glob. Chang. Biol. 10, 1870–1877 (2004).

    Article  Google Scholar 

  63. Kirschbaum, M. U. F. The temperature dependence of organic-matter decomposition — still a topic of debate. Soil Biol. Biochem. 38, 2510–2518 (2006).

    Article  CAS  Google Scholar 

  64. Fierer, N. & Schimel, J. P. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci. Soc. Am. J. 67, 798–805 (2003).

    Article  CAS  Google Scholar 

  65. Freeman, C. et al. Contrasted effects of simulated drought on the production and oxidation of methane in a mid-Wales wetland. Soil Biol. Biochem. 34, 61–67 (2002).

    Article  CAS  Google Scholar 

  66. Meier, I. C. & Leuschner, C. Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob. Chang. Biol. 14, 2081–2095 (2008).

    Article  Google Scholar 

  67. De Deyn, G. B., Cornelissen, J. H. C. & Bardgett, R. D. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett. 11, 516–531 (2008).

    Article  PubMed  Google Scholar 

  68. Zhuang, Q. et al. Methane fluxes between terrestrial ecosystems and the atmosphere northern high latitudes during the past century: a retrospective analysis with a process-based biogeochemistry model. Global Biogeochem. Cycles 18, GB3010 (2004).

    Article  CAS  Google Scholar 

  69. Christensen, T. R. et al. Factors controlling large scale variations in methane emissions from wetlands. Geophys. Res. Lett. 30, 10–13 (2003).

    Article  CAS  Google Scholar 

  70. Ineson, P., Coward, P. A. & Hartwig, U. A. Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: The Swiss free air carbon dioxide enrichment experiment. Plant Soil 198, 89–95 (1998).

    Article  CAS  Google Scholar 

  71. Phillips, R. L., Whalen, S. C. & Schlesinger, W. H. Influence of atmospheric CO2 enrichment on methane consumption in a temperate forest soil. Glob. Chang. Biol. 7, 557–563 (2001).

    Article  Google Scholar 

  72. Mclain, J. E. T., Kepler, T. B. & Ahmann, D. M. Belowground factors mediating changes in methane consumption in a forest soil under elevated CO2 . Global Biogeochem. Cycles 16, 1050 (2002).

    Article  Google Scholar 

  73. Mclain, J. E. T. & Ahmann, D. M. Increased moisture and methanogenesis contribute to reduced methane oxidation in elevated CO2 soils. Biol. Fertil. Soils 44, 623–631 (2008).

    Article  CAS  Google Scholar 

  74. Phillips, R. L., Whalen, S. C. & Schlesinger, W. H. Response of soil methanotrophic activity to carbon dioxide enrichment in a North Carolina coniferous forest. Soil Biol. Biochem. 33, 793–800 (2001).

    Article  CAS  Google Scholar 

  75. Cheng, W. et al. Effect of elevated [CO2] on soil bubble and CH4 emission from a rice paddy: a test by 13C pulse-labeling under free-air CO2 enrichment. Geomicrobiol. J. 25, 396–403 (2008).

    Article  CAS  Google Scholar 

  76. Kolb, S. et al. Quantitative impact of CO2 enriched atmosphere on abundances of methanotrophic bacteria in a meadow soil. Biol. Fertil. Soils 41, 337–342 (2005).

    Article  CAS  Google Scholar 

  77. Singh, B. K. et al. Effect of afforestation and reforestation of pastures on the activity and population dynamics of methanotrophic bacteria. Appl. Environ. Microbiol. 73, 5153–5161 (2007). This work provides the first evidence that soil microorganisms reduce CH 4 flux as a result of land use change.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Singh, B. K. et al. Soil methane oxidation and methanotroph responses to afforestation of pastures with Pinus radiata stands. Soil Biol. Biochem. 41, 2196–2205 (2009).

    Article  CAS  Google Scholar 

  79. Menyailo, O., V, Hungate, B., Abraham, W. & Conrad, R. Changing land use reduces soil CH4 uptake by altering biomass and activity but not composition of high-affinity methanotrophs. Glob. Chang. Biol. 14, 2405–2419 (2008).

    Article  Google Scholar 

  80. Menyailo, O. V., Abraham, W. R. & Conrad, R. Tree species affect atmospheric CH4 oxidation without altering community composition of soil methanotrophs. Soil Biol. Biochem. 42, 101–107 (2010).

    Article  CAS  Google Scholar 

  81. Horz, H. P., Rich, V., Avrahami, S. & Bohannan, B. J. M. Methane-oxidizing bacteria in a California upland grassland soil: diversity and response to simulated global change. Appl. Environ. Microbiol. 71, 2642–2652 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mohanty, S. R., Bodelier, P. L. E. & Conrad, R. Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiol. Ecol. 62, 24–31 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Knoblauch, C., Zimmermann, U., Blumenberg, M., Michaelis, W. & Pfeiffer, E. M. Methane turnover and temperature response of methane-oxidizing bacteria in permafrost-affected soils of northeast Siberia. Soil Biol. Biochem. 40, 3004–3013 (2008).

    Article  CAS  Google Scholar 

  84. Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta analysis. Glob. Chang. Biol. 8, 345–360 (2002).

    Article  Google Scholar 

  85. Barnard, R., Leadley, P. & Hungate, B. Global change, nitrification, and denitrification: a review. Global Biogeochem. Cycles 19, GB1007 (2005).

    Article  CAS  Google Scholar 

  86. Barnard, R., Barthes, L., Le Roux., X. & Leadley, P. W. Dynamics of nitrifying activities, denitrifying activities and nitrogen in grassland mesocosms as altered by elevated CO2 . New Phytol. 162, 365–376 (2004).

    Article  CAS  Google Scholar 

  87. Hungate, B. A., Lund, C. P., Pearson, H. L. & Chapin, F. S. Elevated CO2 and nutrient addition alter soil N cycling and N trace gas fluxes with early season wet-up in a California annual grassland. Biogeochemistry 37, 89–109 (1997).

    Article  CAS  Google Scholar 

  88. Cheng, W. G., Yagi, K., Sakai, H. & Kobayashi, K. Effects of elevated atmospheric CO2 concentrations on CH4 and N2O emission from rice soil: an experiment in controlled-environment chambers. Biogeochemistry 77, 351–373 (2006).

    Article  CAS  Google Scholar 

  89. Baggs, E. M., Richter, M., Cadisch, G. & Hartwig, U. A. Denitrification in grass swards is increased under elevated atmospheric CO2 . Soil Biol. Biochem. 35, 729–732 (2003).

    Article  CAS  Google Scholar 

  90. Horz, H. P., Barbrook, A., Field, C. B. & Bohannan, B. J. M. Ammonia-oxidizing bacteria respond to multifactorial global change. Proc. Natl Acad. Sci. USA 101, 15136–15141 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Stres, B. et al. Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms. FEMS Microbiol. Ecol. 66, 110–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Avrahami, S., Liesack, W. & Conrad, R. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ. Microbiol. 5, 691–705 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Smith, P. Soils as carbon sinks: the global context. Soil Use Manag. 20, 212–218 (2004).

    Article  Google Scholar 

  94. Houghton, R. A., Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 35, 313–347 (2007).

    Article  CAS  Google Scholar 

  95. Lal, R. Carbon sequestration. Phil. Trans. R. Soc. B Biol. Sci. 363, 815–830 (2008).

    Article  CAS  Google Scholar 

  96. De Deyn, G. B. et al. Vegetation composition promotes carbon and nitrogen storage in model grassland communities of contrasting soil fertility. J. Ecol. 97, 864–875 (2009).

    Article  CAS  Google Scholar 

  97. Smith, P., Fang, C. M., Dawson, J. J. C. & Moncrieff, J. B. Impact of global warming on soil organic carbon. Adv. Agronomy 97, 1–43 (2008).

    Article  CAS  Google Scholar 

  98. Busse, M. D. et al. Soil carbon sequestration and changes in fungal and bacterial biomass following incorporation of forest residues. Soil Biol. Biochem. 41, 220–227 (2009).

    Article  CAS  Google Scholar 

  99. Reay, D. S., Dentener, F., Smith, P., Grace, J. & Feely, R. Global nitrogen deposition and carbon sinks. Nature Geosci. 1, 430–437 (2008).

    Article  CAS  Google Scholar 

  100. Bailey, V. L., Smith, J. L. & Bolton, H. Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol. Biochem. 34, 997–1007 (2002).

    Article  CAS  Google Scholar 

  101. Castro, H. F., Classen, A. T., Austin, E. E., Norby, R. J. & Schadt, C. W. Soil microbial community responses to multiple experimental climate change rrivers. Appl. Environ. Microbiol. 76, 999–1007 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Prosser, J. I. et al. The role of ecological theory in microbial ecology. Nature Rev. Microbiol. 5, 384–392 (2007).

    Article  CAS  Google Scholar 

  103. Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007). This study attempts to classify bacteria into different ecological groups on the basis of their physiological abilities.

    Article  PubMed  Google Scholar 

  104. Conant, R. T., Smith, G. R. & Paustian, K. Spatial variability of soil carbon in forested and cultivated sites: implications for change detection. J. Environ. Qual. 32, 278–286 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Soussana, J. F. et al. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag. 20, 219–230 (2004).

    Article  Google Scholar 

  106. McLauchlan, K. K., Hobbie, S. E. & Post, W. M. Conversion from agriculture to grassland builds soil organic matter on decadal timescales. Ecol. Appl. 16, 143–153 (2006).

    Article  PubMed  Google Scholar 

  107. Fornara, D. A. & Tilman, D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J. Ecol. 96, 314–322 (2008).

    Article  CAS  Google Scholar 

  108. Steinbeiss, S. et al. Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob. Chang. Biol. 14, 2937–2949 (2008).

    Article  Google Scholar 

  109. Conant, R. T., Paustian, K. & Elliott, E. T. Grassland management and conversion into grassland: effects on soil carbon. Ecol. Appl. 11, 343–355 (2001).

    Article  Google Scholar 

  110. Craine, J. M., Morrow, C. & Fierer, N. Microbial nitrogen limitation increases decomposition. Ecology 88, 2105–2113 (2007).

    Article  PubMed  Google Scholar 

  111. Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Oremland, R. S. & Culbertson, C. W. Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor. Nature 356, 421–423 (1992).

    Article  CAS  Google Scholar 

  113. Tate, K. R. et al. Methane uptake in soils from Pinus radiata plantations, a reverting shrubland and adjacent pastures: Effects of land-use change, and soil texture, water and mineral nitrogen. Soil Biol.Biochem. 39, 1437–1449 (2007).

    Article  CAS  Google Scholar 

  114. Smith, K. A. et al. Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Glob. Chang. Biol. 6, 791–803 (2000).

    Article  Google Scholar 

  115. Kolbs, S. The quest for atmospheric methane oxidisers in forest soils. Environ. Microbiol. Rep. 1, 336–346 (2009).

    Article  CAS  Google Scholar 

  116. Yagi, K. et al. Effect of water management on methane emission from a Japanese rice paddy field: automated methane monitoring. Global Biogeochem. Cycles 10, 255–267 (1996).

    Article  CAS  Google Scholar 

  117. Neue, H. U. Fluxes of methane from rice fields and potential for mitigation. Soil Use Manag. 13, 258–267 (2007).

    Article  Google Scholar 

  118. Lipson, D. A., Monson, R. K., Schmidt, S. K. & Weintraub, M. N. The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest. Bigeochemistry 95, 23–35 (2009).

    Article  Google Scholar 

  119. Heimann, M., & Reichstein, M. Terrestrail ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Agren, G. I. Climate change: microbial mitigation. Nature Geosci. 3, 303–304 (2010).

    Article  CAS  Google Scholar 

  121. Cleveland, C. C., Nemergut, D. R., Schmidt, S. K. & Townsend, A. R. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82, 229–240 (2007).

    Article  CAS  Google Scholar 

  122. Padmanabhan, P. et al. Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA. Appl. Environ. Microbiol. 69, 1614–1622 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lauro, F. M. et al. The genomic basis of trophic strategy in marine bacteria. Proc. Natl Acad. Sci. USA 106, 15527–15533 (2009). This investigation provides evidence that ecological and trophic classification of uncultivable bacteria can be obtained from their genomic data without a need to culture them.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ginolhac, A. et al. Phylogenetic analysis of polyketide synthase I domains from soil metagenomic libraries allows selection of promising clones. Appl. Environ. Microbiol. 70, 5522–5527 (2004). This study uses a mathematical formula to estimate microbial diversity and suggests that at least 2 million clones need to be sequenced to cover the diversity of a microbial community in a soil sample.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Singh, B. K., Campbell, C. D., Sorenson, S. J. & Zhou, J. Z. Soil genomics. Nature Rev. Microbiol. 3 Aug 2009 (doi:10.1038/nrmicro2119-c1).

    Article  CAS  PubMed  Google Scholar 

  126. Ozsolak, F. et al. Direct RNA sequencing. Nature 461, 814–818 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Singh, B. K., Millard, P., Whiteley, A. S. & Murrell, J. C. Unravelling rhizosphere–microbial interactions: opportunities and limitations. Trends Microbiol. 12, 386–393 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Kalyuzhnaya, M. G. et al. High-resolution metagenomics targets specific functional types in complex microbial communities. Nature Biotech. 26, 1029–1034 (2008).

    Article  CAS  Google Scholar 

  129. Themelis, N. J. & Ulloa, P. A. Methane generation in landfills. Ren. Energy 32, 1243–1257 (2007).

    Article  CAS  Google Scholar 

  130. Tafdrup, S. Viable energy production and waste recycling from anaerobic digestion of manure and other biomass materials. Biomass Bioenergy 9, 303–314 (1995).

    Article  CAS  Google Scholar 

  131. Searchinger, T. et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Strobel, G. A. et al. The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154, 3319–3328 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Keasling, J. D. & Chou, H. Metabolic engineering delivers next-generation biofuels. Nature Biotech. 26, 298–299 (2008).

    Article  CAS  Google Scholar 

  134. Stephanopoulos, G. Challenges in engineering microbes for biofuels production. Science 315, 801–804 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Chisti, Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 26, 126–131 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank C. Campbell, G. Grelet and C. Macdonald for detailed discussions and comments on the manuscript. P.S. holds a Royal Society Wolfson Research Merit Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brajesh K. Singh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Brajesh K. Singh's homepage

Glossary

Radiative forcing

A measure of the influence that a factor has in altering the balance of incoming and outgoing energy in the Earth–atmosphere system. It is an index of the importance of the factor as a potential climate change mechanism.

Heterotrophic

Of an organism: able to use organic compounds as nutrients to produce energy for growth.

Autotrophic

Of an organism: able to synthesize organic carbon from the fixation of inorganic carbon (for example, by photosynthesis or chemosynthesis).

Dissolved inorganic carbon pool

The sum of inorganic carbon in solution.

Net primary production

The part of the total energy fixed by autotrophic organisms that remains after the losses through autotrophic respiration.

Methanogenesis

The process by which methane is produced by microorganisms (mainly archaea).

Methanotrophic

Of an organism: able to use methane as a nutrient to produce energy for growth.

Nitrification

The conversion of NH3 into a more oxidized form such as nitrate or nitrite.

Denitrification

The reduction of oxidized forms of nitrogen to N2O and dinitrogen.

Reactive nitrogen

Nitrogen in a form that can undergo biological transformations, such as nitrite and nitrate.

Permafrost

Soil that remains permanently frozen.

Recalcitrant carbon

A form of carbon that is resistant to microbial decomposition owing to its chemical structure and composition.

Peatland

An area dominated by deep organic soils.

Water table

The level at which the groundwater pressure is the same as the atmospheric pressure.

Arable land

Land that is used for growing crops.

Mineralization

The conversion of organic carbon into inorganic forms, mainly CO2.

Grassland

Land that has grass as the dominant vegetation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, B., Bardgett, R., Smith, P. et al. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8, 779–790 (2010). https://doi.org/10.1038/nrmicro2439

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2439

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing