Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mass spectrometry tools for the classification and identification of bacteria

Key Points

  • Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectrometry has become an important tool in the life sciences. Recently, mass spectrometry methods have been developed that are tailored to the rapid classification and identification of bacteria and other microorganisms.

  • MALDI-based protein mass pattern detection ('profiling') is an inexpensive and straightforward approach for bacterial classification and identification. The method can easily distinguish bacteria on the genus, species and, sometimes, subspecies level.

  • MALDI-based resequencing is an accurate, flexible and efficient alternative to conventional DNA sequencing applications in microbiology.

  • ESI-based detection of PCR products is a fast epidemiological tool for the analysis of microorganisms.

  • The three mass spectrometry approaches can be cleverly combined to provide comprehensive tools for bacterial detection.

  • Automated, standardized protocols and mature software packages for the mass spectrometry analysis of bacteria are available.

  • The methods can be easily adapted by microbiology laboratories using either academic or commercial protocols.

Abstract

Mass spectrometry has become an important analytical tool in biology in the past two decades. In principle, mass spectrometry offers high-throughput, sensitive and specific analysis for many applications in microbiology, including clinical diagnostics and environmental research. Recently, several mass spectrometry methods for the classification and identification of bacteria and other microorganisms, as well as new software analysis tools, have been developed. In this Review we discuss the application range of these mass spectrometry procedures and their potential for successful transfer into microbiology laboratories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Matrix-assisted laser desorption/ionization protein mass pattern approach.
Figure 2: Matrix-assisted laser desorption/ionization-based resequencing.
Figure 3: Electrospray ionization analysis of PCR products.

Similar content being viewed by others

References

  1. Peeling, R. W., Smith, P. G. & Bossuyt, P. M. A guide for diagnostic evaluations. Nature Rev. Microbiol. 4, S2–S6 (2006).

    Article  Google Scholar 

  2. Coffey, A. G., Daly, C. & Fitzgerald, G. The impact of biotechnology on the dairy industry. Biotechnol. Adv. 12, 625–33 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Wilkinson, J. M. Silage and animal health. Nat. Toxins 7, 221–32 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Sintchenko, V., Iredell, J. R. & Gilbert, G. L. Pathogen profiling for disease management and surveillance. Nature Rev. Microbiol. 5, 464–470 (2007).

    Article  CAS  Google Scholar 

  5. Holmes, B., Willcox, W. R. & Lapage, S. P. Identification of Enterobacteriaceae by the API 20E system. J. Clin. Pathol. 31, 22–30 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Engvall, E. Quantitative enzyme immunoassay (ELISA) in microbiology. Med. Biol. 55, 193–200 (1977).

    CAS  PubMed  Google Scholar 

  7. O'Sullivan, T. F. & Fitzgerald, G. F. Comparison of Streptococcus thermophilus strains by pulse field gel electrophoresis of genomic DNA. FEMS Microbiol. Lett. 168, 213–219 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Sanger, F., Nickens, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shendure, J., Mitra, R. D., Varma, C. & Church, G. M. Advanced sequencing technologies: methods and goals. Nature Rev. Genet. 5, 335–344 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. MacLean, D., Jones, J. D. & Studholme, D. J. Application of 'next-generation' sequencing technologies to microbial genetics. Nature Rev. Microbiol. 7, 287–296 (2009).

    Google Scholar 

  11. Gross, J. H. Mass Spectrometry – A Textbook (Springer, Heidelberg, 2004).

    Book  Google Scholar 

  12. Hesse, M., Meier, H. & Zeeh, B. Spectroscopic Methods in Organic Chemistry 2nd edn (Thieme, Stuttgart, 2008).

    Book  Google Scholar 

  13. Fox, A. Mass spectrometry for species or strain identification after culture or without culture: past, present, and future. J. Clin. Microbiol. 44, 2677–2680 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal. Chem. 60, 2299–2303 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Fenn, J. B. Electrospray wings for molecular elephants (Nobel lecture). Angew. Chem. Int. Edn Engl. 42, 3871–3894 (2003).

    Article  CAS  Google Scholar 

  16. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Sauer, S. et al. Miniaturization in functional genomics and proteomics. Nature Rev. Genet. 6, 465–476 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Demirev, P. A., Ho, Y. P., Ryzhov, V. & Fenselau, C. Microorganism identification by mass spectrometry and protein database searches. Anal. Chem. 71, 2732–2738 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Freiwald, A. & Sauer, S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nature Protoc. 4, 732–742 (2009). A practical guide for protein mass pattern analysis of bacteria.

    Article  CAS  Google Scholar 

  20. Sauer, S. Typing of single nucleotide polymorphisms by MALDI mass spectrometry: principles and diagnostic applications. Clin. Chim. Acta 363, 95–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Ryzhov, V. & Fenselau, C. Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal. Chem. 73, 746–750 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Teramoto, K., Sato, H., Sun, L., Torimura, M. & Tao, H. A simple intact protein analysis by MALDI-MS for characterization of ribosomal proteins of two genome-sequenced lactic acid bacteria and verification of their amino acid sequences. J. Proteome Res. 6, 3899–3907 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Claydon, M. A., Davey, S. N., Edwards-Jones, V. & Gordon, D. B. The rapid identification of intact microorganisms using mass spectrometry. Nature Biotech. 14, 1584–1586 (1996).

    Article  CAS  Google Scholar 

  24. Holland, R. D. et al. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 10, 1227–1232 (1996). References 23 and 24 are the first papers to describe protein mass pattern detection of bacteria.

    Article  CAS  PubMed  Google Scholar 

  25. Chong, B. E., Wall, D. B., Lubman, D. M. & Flynn, S. J. Rapid profiling of E. coli proteins up to 500 kDa from whole cell lysates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 11, 1900–1908 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, P., Lu, Y. & Harrington, P. B. Biomarker profiling and reproducibility study of MALDI-MS measurements of Escherichia coli by analysis of variance-principal component analysis. Anal. Chem. 80, 1474–1481 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Williams, T. L., Andrzejewski, D., Lay, J. O. & Musser, S. M. Experimental factors affecting the quality and reproducibility of MALDI TOF mass spectra obtained from whole bacteria cells. J. Am. Soc. Mass Spectrom. 14, 342–351 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Fenselau, C. & Demirev, P. A. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom. Rev. 20, 157–171 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Lay, J. O. Jr. MALDI-TOF mass spectrometry of bacteria. Mass Spectrom. Rev. 20, 172–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Lasch, P. et al. MALDI-TOF mass spectrometry compatible inactivation method for highly pathogenic microbial cells and spores. Anal. Chem. 80, 2026–2034 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Sauer, S. et al. Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS ONE 3, e2843 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Bright, J. J., Claydon, M. A., Soufian, M. & Gordon, D. B. Rapid typing of bacteria using matrix-assisted laser desorption ionization time-of-flight mass spectrometry and pattern recognition software. J. Microbiol. Methods 48, 127–138 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt, F., Fiege, T., Hustoft, H. K., Kneist, S. & Thiede, B. Shotgun mass mapping of Lactobacillus species and subspecies from caries related isolates by MALDI-MS. Proteomics 9, 1994–2003 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Hsieh, S. Y. et al. Highly efficient classification and identification of human pathogenic bacteria by MALDI-TOF MS. Mol. Cell. Proteomics 7, 448–456 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Ilina, E. N. et al. Direct bacterial profiling by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for identification of pathogenic Neisseria. J. Mol. Diagn. 11, 75–86 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dieckmann, R., Helmuth, R., Erhard, M. & Malorny B. Rapid classification and identification of salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 74, 7767–7778 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barbuddhe, S. B. et al. Rapid identification and typing of Listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 74, 5402–5407 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grosse-Herrenthey, A. et al. Challenging the problem of clostridial identification with matrix-assisted laser desorption and ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Anaerobe 14, 242–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Carbonnelle, E. et al. Rapid identification of Staphylococci isolated in clinical microbiology laboratories by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 45, 2156–2161 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Teramoto, K. et al. Phylogenetic classification of Pseudomonas putida strains by MALDI-MS using ribosomal subunit proteins as biomarkers. Anal. Chem. 79, 8712–8719 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Lartigue, M. F. et al. Identification of Streptococcus agalactiae isolates from various phylogenetic lineages by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 47, 2284–2287 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mellmann, A. et al. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J. Clin. Microbiol. 46, 1946–1954 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nagy, E., Maier, T., Urban, E., Terhes, G. & Kostrzewa, M. Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. Clin. Microbiol. Infect. 15, 796–802 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Marklein, G. et al. Matrix-assisted laser desorption ionization-time of flight mass-spectrometry for fast and reliable identification of clinical yeast isolates. J. Clin. Microbiol. 47, 2912–2917 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mullis, K. et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51, 263–273 (1986).

    Article  CAS  PubMed  Google Scholar 

  46. Sauer, S. et al. Full flexibility genotyping of single nucleotide polymorphisms by the GOOD assay. Nucleic Acids Res. 28, e100 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Enright, M. C. & Spratt, B. G. Multilocus sequence typing. Trends Microbiol. 7, 482–487 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Nakamura, Y. et al. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235, 1616–1622 (1987).

    Article  CAS  PubMed  Google Scholar 

  49. Stanssens, P. et al. High-throughput MALDI-TOF discovery of genomic sequence polymorphisms. Genome Res. 14, 126–133 (2004). This paper describes the principle of MALDI-based resequencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ehrich, M., Bocker, S. & van den Boom, D. Multiplexed discovery of sequence polymorphisms using base-specific cleavage and MALDI-TOF MS. Nucleic Acids Res. 33, e38 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ehrich, M. et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl Acad. Sci. USA 102, 15785–15790 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. von Wintzingerode, F. et al. Base-specific fragmentation of amplified 16S rRNA genes analyzed by mass spectrometry: a tool for rapid bacterial identification. Proc. Natl Acad. Sci. USA 99, 7039–7044 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kirpekar, F. et al. Matrix assisted laser desorption/ionization mass spectrometry of enzymatically synthesized RNA up to 150 kDa. Nucleic Acids Res. 22, 3866–3870 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Honisch, C. et al. Automated comparative sequence analysis by base-specific cleavage and mass spectrometry for nucleic acid-based microbial typing. Proc. Natl Acad. Sci. USA 104, 10649–10654 (2007). This article describes in detail the application of MALDI resequencing for the analysis of bacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Griebel, T., Brinkmeyer, M. & Bocker, S. EPoS: a modular software framework for phylogenetic analysis. Bioinformatics 24, 2399–2400 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Bocker, S. Simulating multiplexed SNP discovery rates using base-specific cleavage and mass spectrometry. Bioinformatics 23, e5–e11 (2007).

    Article  PubMed  CAS  Google Scholar 

  57. Bocker, S. SNP and mutation discovery using base-specific cleavage and MALDI-TOF mass spectrometry. Bioinformatics 19, i44–i53 (2003).

    Article  PubMed  Google Scholar 

  58. Blanc, D. S. The use of molecular typing for epidemiological surveillance and investigation of endemic nosocomial infections. Infect. Genet. Evol. 4, 193–197 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Tenover, F. C. et al. How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: a review for healthcare epidemiologists. Infect. Control Hosp. Epidemiol. 18, 426–439 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Honisch, C., Raghunathan, A., Cantor, C. R., Palsson, B. O. & van den Boom, D. High-throughput mutation detection underlying adaptive evolution of Escherichia coli-K12. Genome Res. 14, 2495–2502 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sauer, S., Reinhardt, R., Lehrach, H. & Gut, I. G. Single-nucleotide polymorphisms: analysis by mass spectrometry. Nature Protoc. 1, 1761–1771 (2006).

    Article  CAS  Google Scholar 

  62. Storm, N., Darnhofer-Patel, B., van den Boom, D. & Rodi, C. P. MALDI-TOF mass spectrometry-based SNP genotyping. Methods Mol. Biol. 212, 241–262 (2003).

    CAS  PubMed  Google Scholar 

  63. Ecker, D. J. et al. Ibis T5000: a universal biosensor approach for microbiology. Nature Rev. Microbiol. 6, 553–558 (2008).

    Article  CAS  Google Scholar 

  64. Muddiman, D. C. et al. Characterization of PCR products from bacilli using electrospray ionization FTICR mass spectrometry. Anal. Chem. 68, 3705–3712 (1996). One of the first publications showing the high-resolution detection of a PCR product by ESI Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Currently, a simple TOF analyser is used instead of the costly ICR device.

    Article  CAS  PubMed  Google Scholar 

  65. Wunschel, D. S. et al. Analysis of double-stranded polymerase chain reaction products from the Bacillus cereus group by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 10, 29–35 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Muddiman, D. C., Anderson, G. A., Hofstadler, S. A. & Smith, R. D. Length and base composition of PCR-amplified nucleic acids using mass measurements from electrospray ionization mass spectrometry. Anal. Chem. 69, 1543–1549 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Ecker, D. J. et al. Molecular genotyping of microbes by multilocus PCR and mass spectrometry: a new tool for hospital infection control and public health surveillance. Methods Mol. Biol. 551, 71–87 (2009). An informative introduction to the PCR–ESI detection method, including case studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jiang, Y. & Hofstadler, S. A. A highly efficient and automated method of purifying and desalting PCR products for analysis by electrospray ionization mass spectrometry. Anal. Biochem. 316, 50–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Hofstadler, S. A. & Sannes-Lowery, K. A. Applications of ESI-MS in drug discovery: interrogation of noncovalent complexes. Nature Rev. Drug Discov. 5, 585–595 (2006).

    Article  CAS  Google Scholar 

  70. Sauer, S. & Gut, I. G. Genotyping single-nucleotide polymorphisms by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 782, 73–87 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Hall, T. A. et al. Base composition analysis of human mitochondrial DNA using electrospray ionization mass spectrometry: a novel tool for the identification and differentiation of humans. Anal. Biochem. 344, 53–69 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Sampath, R. et al. Global surveillance of emerging influenza virus genotypes by mass spectrometry. PLoS ONE 2, e489 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Ecker, D. J. et al. Rapid identification and strain-typing of respiratory pathogens for epidemic surveillance. Proc. Natl Acad. Sci. USA 102, 8012–8017 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ecker, J. A. et al. Identification of Acinetobacter species and genotyping of Acinetobacter baumannii by multilocus PCR and mass spectrometry. J. Clin. Microbiol. 44, 2921–2932 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Van Ert, M. N. et al. Mass spectrometry provides accurate characterization of two genetic marker types in Bacillus anthracis. Biotechniques 37, 642–651 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Faix, D. J., Sherman, S. S. & Waterman, S. H. Rapid-test sensitivity for novel wwine-origin influenza A (H1N1) virus in humans. N. Engl. J. Med. (2009).

  77. Hujer, K. M. et al. Rapid determination of quinolone resistance in Acinetobacter spp. J. Clin. Microbiol. 47, 1436–1442 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Keys, C. J. et al. Compilation of a MALDI-TOF mass spectral database for the rapid screening and characterisation of bacteria implicated in human infectious diseases. Infect. Genet. Evol. 4, 221–242 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Arnold, R. J. & Reilly, J. P. Fingerprint matching of E. coli strains with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of whole cells using a modified correlation approach. Rapid Commun. Mass Spectrom. 12, 630–636 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, P., Lu, Y. & Harrington, P. B. Application of linear and nonlinear discrete wavelet transforms to MALDI-MS measurements of bacteria for classification. Anal. Chem. 80, 7218–7225 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Hagen, R. M. et al. Development of a real-time PCR assay for rapid identification of methicillin-resistant Staphylococcus aureus from clinical samples. Int. J. Med. Microbiol. 295, 77–86 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. He, Y. et al. PIML: the Pathogen Information Markup Language. Bioinformatics 21, 116–121 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Mellmann, A. et al. High interlaboratory reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry-based species identification of nonfermenting bacteria. J. Clin. Microbiol. 47, 3732–3734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Guo, Z., Liu, Y., Li, S. & Yang, Z. Interaction of bacteria and ion-exchange particles and its potential in separation for matrix-assisted laser desorption/ionization mass spectrometric identification of bacteria in water. Rapid Commun. Mass Spectrom. 23, 3983–3993 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Kostrzewa, T. Maier, J. Sauer and C. Honisch for discussions and C.-T. Han for critical reading of the manuscript. We also thank S. Holzhauser, V. Nicolaysen and A. Freiwald for help with the figures. Our work is supported by the German Ministry for Education and Research (BMBF; grant number 0315082), the National Genome Research Net (NGFN; grant number 01 GS 0828), the European Union (FP7/2007-2013, under grant agreement number [HEALTH-F4-2008-201418], entitled READNA), and the Max Planck Society. We apologize to all whose work is not covered here owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Sauer.

Related links

Related links

DATABASES

Entrez Genome Project

Bacillus anthracis

Bacteroides fragilis

Escherichia coli str. K-12 substr. MG1655

Haemophilus influenzae

Neisseria meningitidis

Staphylococcus aureus

Streptococcus pyogenes

FURTHER INFORMATION

Sascha Sauer's homepage

Abbott

AnagnosTec

Bacteria Graphic Profile

Bruker Daltonics

Ibis Biociences

Mass Spectrometry – a Textbook

NCBI Taxonomy Database

Sequenom

Shimadzu

Waters

Glossary

Enzyme-linked immunosorbent assay

(ELISA). A common serological test for the presence of particular antigens, using specific antibody binding and an enzyme to generate reporter label molecules.

Pulsed-field gel electrophoresis

(PFGE). A variation on the standard gel electrophoresis such that an alternating voltage gradient is applied to improve the separation of biomolecules such as large nucleic acids.

GC–MS

Gas chromatography–mass spectrometry coupling, a technique that is applied to isolate the components of volatile samples in the gas phase and to seamlessly identify and potentially quantify the single components by a mass spectrometer.

Matrix-assisted laser desorption/ionization

(MALDI). A soft method for the generation of ions that uses laser bombardment of crystals containing analyte molecules and an excess of matrix molecules that absorb laser light of a specific wavelength.

Electrospray ionization

(ESI). A soft technique for the generation of ions in aerosols.

Unsupervised hierarchical clustering

A procedure for statistical data analysis that uses clustering algorithms to find successive data clusters using previously generated clusters, which can be represented in a tree structure termed a dendrogram.

Multilocus sequence typing

A molecular biology method for the typing of multiple genomic loci, which is applied to analyse isolates of bacterial species using the DNA sequences of internal fragments of multiple housekeeping genes. The first protocol has been established for Neisseria meningitidis, the causative pathogen of meningococcal meningitis and septicaemia.

Euclidean distance

A mathematical term that describes the distance between two points, which can be verified by application of the Pythagorean theorem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauer, S., Kliem, M. Mass spectrometry tools for the classification and identification of bacteria. Nat Rev Microbiol 8, 74–82 (2010). https://doi.org/10.1038/nrmicro2243

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2243

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology