Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Apoptosis in animal models of virus-induced disease

Key Points

  • Apoptosis occurs in a wide range of human diseases.

  • In animal models of virus-induced disease, apoptosis correlates with viral titre and can be found in areas targeted by viral infection, which indicates that viruses induce apoptosis in animal models of virus-induced disease.

  • Apoptosis correlates with disease severity, suggesting that apoptosis is a mechanism of virus-induced injury and disease.

  • Apoptosis can be triggered by the immune system or by the interaction of viral proteins with host signalling pathways.

  • Inhibition of apoptosis has mixed effects on viral titre but typically has a beneficial effect on virus-induced disease.

Abstract

Apoptosis is associated with virus-induced human diseases of the central nervous system, heart and liver, and causes substantial morbidity and mortality. Although virus-induced apoptosis is well characterized in individual cells in cell culture, virus-induced apoptosis in vivo and the role of apoptosis in virus-induced disease is not well established. This Review focuses on animal models of virus-induced diseases of the central nervous system, heart and liver that provide insights into the role of apoptosis in pathogenesis, the pathways involved and the potential therapeutic implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Caspase-dependent apoptosis.
Figure 2: Inhibition of caspase 3, apoptosis (caspase 3 activation) and survival in reovirus-infected mice.

Similar content being viewed by others

References

  1. Li, W., Galey, D., Mattson, M. P. & Nath, A. Molecular and cellular mechanisms of neuronal cell death in HIV dementia. Neurotox. Res. 8, 119–134 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Perkins, D., Gyure, K. A., Pereira, E. F. & Aurelian, L. Herpes simplex virus type 1-induced encephalitis has an apoptotic component associated with activation of c-Jun N-terminal kinase. J. Neurovirol. 9, 101–111 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. DeBiasi, R. L., Kleinschmidt-Demasters, B. K., Richardson-Burns, S. & Tyler, K. L. Central nervous system apoptosis in human herpes simplex virus and cytomegalovirus encephalitis. J. Infect. Dis. 186, 1547–1557 (2002).

    Article  PubMed  Google Scholar 

  4. Alter, P., Jobmann, M., Meyer, E., Pankuweit, S. & Maisch, B. Apoptosis in myocarditis and dilated cardiomyopathy: does enterovirus genome persistence protect from apoptosis? An endomyocardial biopsy study. Cardiovasc. Pathol. 10, 229–234 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Bantel, H. & Schulze-Osthoff, K. Apoptosis in hepatitis C virus infection. Cell Death Differ. 10 (Suppl. 1), 48–58 (2003).

    Article  CAS  Google Scholar 

  6. Calabrese, F. et al. Liver cell apoptosis in chronic hepatitis C correlates with histological but not biochemical activity or serum HCV-RNA levels. Hepatology 31, 1153–1159 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Patel, T., Roberts, L. R., Jones, B. A. & Gores, G. J. Dysregulation of apoptosis as a mechanism of liver disease: an overview. Semin. Liver Dis. 18, 105–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Rodrigues, C. M. et al. Apoptotic cell death does not parallel other indicators of liver damage in chronic hepatitis C patients. J. Viral Hepat. 7, 175–183 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Walsh, M. J. et al. Steatosis and liver cell apoptosis in chronic hepatitis C: a mechanism for increased liver injury. Hepatology 39, 1230–1238 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Leifeld, L. et al. Intrahepatic activation of caspases in human fulminant hepatic failure. Liver Int. 26, 872–879 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Nunez, G., Benedict, M. A., Hu, Y. & Inohara, N. Caspases: the proteases of the apoptotic pathway. Oncogene 17, 3237–3245 (1998).

    Article  PubMed  Google Scholar 

  12. Cohen, G. M. Caspases: the executioners of apoptosis. Biochem. J. 326, 1–16 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312–1316 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Heibein, J. A. et al. Granzyme B-mediated cytochrome c release is regulated by the Bcl-2 family members Bid and Bax. J. Exp. Med. 192, 1391–1402 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Samuel, M. A., Morrey, J. D. & Diamond, M. S. Caspase 3-dependent cell death of neurons contributes to the pathogenesis of West Nile virus encephalitis. J. Virol. 81, 2614–2623 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Oberhaus, S. M., Smith, R. L., Clayton, G. H., Dermody, T. S. & Tyler, K. L. Reovirus infection and tissue injury in the mouse central nervous system are associated with apoptosis. J. Virol. 71, 2100–2106 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Labrada, L., Liang, X. H., Zheng, W., Johnston, C. & Levine, B. Age-dependent resistance to lethal alphavirus encephalitis in mice: analysis of gene expression in the central nervous system and identification of a novel interferon-inducible protective gene, mouse ISG12. J. Virol. 76, 11688–11703 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Joo, C. H. et al. Coxsackievirus B3 induces apoptosis in the early phase of murine myocarditis: a comparative analysis of cardiovirulent and noncardiovirulent strains. Intervirology 46, 135–140 (2003).

    Article  PubMed  Google Scholar 

  19. Saraste, A. et al. Cardiomyocyte apoptosis in experimental coxsackievirus B3 myocarditis. Cardiovasc. Pathol. 12, 255–262 (2003).

    Article  PubMed  Google Scholar 

  20. Henke, A., Huber, S., Stelzner, A. & Whitton, J. L. The role of CD8+ T lymphocytes in coxsackievirus B3-induced myocarditis. J. Virol. 69, 6720–6728 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. DeBiasi, R. L. et al. Caspase inhibition protects against reovirus-induced myocardial injury in vitro and in vivo. J. Virol. 78, 11040–11050 (2004). This study shows that inhibition of caspase 3 reduces the severity of reovirus-induced cardiac disease and enhances survival in infected mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O'Donnell, S. M. et al. Organ-specific roles for transcription factor NF-κB in reovirus-induced apoptosis and disease. J. Clin. Invest. 115, 2341–2350 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Riedl, S. J. et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell 104, 791–800 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Lenzo, J. C., Fairweather, D., Cull, V., Shellam, G. R. & James Lawson, C. M. Characterisation of murine cytomegalovirus myocarditis: cellular infiltration of the heart and virus persistence. J. Mol. Cell. Cardiol. 34, 629–640 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Irie, H. et al. Herpes simplex virus hepatitis in macrophage-depleted mice: the role of massive, apoptotic cell death in pathogenesis. J. Gen. Virol. 79, 1225–1231 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Xiao, S. Y., Guzman, H., Zhang, H., Travassos da Rosa, A. P. & Tesh, R. B. West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis. Emerg. Infect. Dis. 7, 714–721 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakamoto, Y. et al. Prevention of hepatocellular carcinoma development associated with chronic hepatitis by anti-Fas ligand antibody therapy. J. Exp. Med. 196, 1105–1111 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tumurbaatar, B., Sun, Y., Chan, T. & Sun, J. Cre-estrogen receptor-mediated hepatitis C virus structural protein expression in mice. J. Virol. Methods 146, 5–13 (2007). This study shows that inducible expression of HCV core proteins induces apoptosis in the hepatocytes of transgenic mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Richardson-Burns, S. M. & Tyler, K. L. Regional differences in viral growth and central nervous system injury correlate with apoptosis. J. Virol. 78, 5466–5475 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. DeBiasi, R. L., Edelstein, C. L., Sherry, B. & Tyler, K. L. Calpain inhibition protects against virus-induced apoptotic myocardial injury. J. Virol. 75, 351–361 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoyt, C. C. et al. Nonstructural protein σ1s is a determinant of reovirus virulence and influences the kinetics and severity of apoptosis induction in the heart and central nervous system. J. Virol. 79, 2743–2753 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tsunoda, I., Kurtz, C. I. & Fujinami, R. S. Apoptosis in acute and chronic central nervous system disease induced by Theiler's murine encephalomyelitis virus. Virology 228, 388–393 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Lewis, J., Wesselingh, S. L., Griffin, D. E. & Hardwick, J. M. Alphavirus-induced apoptosis in mouse brains correlates with neurovirulence. J. Virol. 70, 1828–1835 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beckham, J. D., Goody, R. J., Clarke, P., Bonny, C. & Tyler, K. L. Novel strategy for treatment of viral central nervous system infection by using a cell-permeating inhibitor of c-Jun N-terminal kinase. J. Virol. 81, 6984–6992 (2007). This paper reports that the inhibition of JNK can be used to block neuronal apoptosis, decrease the severity of reovirus-induced CNS disease and enhance survival in infected mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goody, R. J., Schittone, S. A. & Tyler, K. L. Experimental reovirus-induced acute flaccid paralysis and spinal motor neuron cell death. J. Neuropathol. Exp. Neurol. 67, 231–239 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Nakamoto, Y., Suda, T., Momoi, T. & Kaneko, S. Different procarcinogenic potentials of lymphocyte subsets in a transgenic mouse model of chronic hepatitis B. Cancer Res. 64, 3326–3333 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Morrey, J. D. et al. West Nile virus-induced acute flaccid paralysis is prevented by monoclonal antibody treatment when administered after infection of spinal cord neurons. J. Neurovirol. 14, 152–163 (2008). This study shows that WNV-induced acute flaccid paralysis in hamsters is due to neuronal infection and apoptosis in the lumbar spinal cord and that treatment with a therapeutic antibody prevents paralysis when administered after WNV infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schoneboom, B. A., Catlin, K. M., Marty, A. M. & Grieder, F. B. Inflammation is a component of neurodegeneration in response to Venezuelan equine encephalitis virus infection in mice. J. Neuroimmunol. 109, 132–146 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Weissenbock, H., Hornig, M., Hickey, W. F. & Lipkin, W. I. Microglial activation and neuronal apoptosis in Bornavirus infected neonatal Lewis rats. Brain Pathol. 10, 260–272 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Andrews, D. M., Matthews, V. B., Sammels, L. M., Carrello, A. C. & McMinn, P. C. The severity of murray valley encephalitis in mice is linked to neutrophil infiltration and inducible nitric oxide synthase activity in the central nervous system. J. Virol. 73, 8781–8790 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Matthews, V. et al. Morphological features of Murray Valley encephalitis virus infection in the central nervous system of Swiss mice. Int. J. Exp. Pathol. 81, 31–40 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Taylor, R. M., Hurlbut, H. S., Work, T. H., Kingston, J. R. & Frothingham, T. E. Sindbis virus: a newly recognized arthropod-transmitted virus. Am. J. Trop. Med. Hyg. 4, 844–862 (1955).

    Article  CAS  PubMed  Google Scholar 

  43. Tsunoda, I., Libbey, J. E. & Fujinami, R. S. TGF-β1 suppresses T cell infiltration and VP2 puff B mutation enhances apoptosis in acute polioencephalitis induced by Theiler's virus. J. Neuroimmunol. 190, 80–89 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shrestha, B., Gottlieb, D. & Diamond, M. S. Infection and injury of neurons by West Nile encephalitis virus. J. Virol. 77, 13203–13213 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huber, S. A., Mortensen, A. & Moulton, G. Modulation of cytokine expression by CD4+ T cells during coxsackievirus B3 infections of BALB/c mice initiated by cells expressing the γδ+ T-cell receptor. J. Virol. 70, 3039–3044 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rasalingam, P., Rossiter, J. P. & Jackson, A. C. Recombinant rabies virus vaccine strain SAD-l16 inoculated intracerebrally in young mice produces a severe encephalitis with extensive neuronal apoptosis. Can. J. Vet. Res. 69, 100–105 (2005).

    PubMed  PubMed Central  Google Scholar 

  47. Jackson, A. C., Rasalingam, P. & Weli, S. C. Comparative pathogenesis of recombinant rabies vaccine strain SAD-L16 and SAD-D29 with replacement of Arg333 in the glycoprotein after peripheral inoculation of neonatal mice: less neurovirulent strain is a stronger inducer of neuronal apoptosis. Acta Neuropathol. 111, 372–378 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Sarmento, L., Tseggai, T., Dhingra, V. & Fu, Z. F. Rabies virus-induced apoptosis involves caspase-dependent and caspase-independent pathways. Virus Res. 121, 144–151 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Reid, J. E. & Jackson, A. C. Experimental rabies virus infection in Artibeus jamaicensis bats with CVS-24 variants. J. Neurovirol. 7, 511–517 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Yan, X. et al. Silver-haired bat rabies virus variant does not induce apoptosis in the brain of experimentally infected mice. J. Neurovirol. 7, 518–527 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Park, C. H. et al. The histopathogenesis of paralytic rabies in six-week-old C57BL/6J mice following inoculation of the CVS-11 strain into the right triceps surae muscle. J. Vet. Med. Sci. 68, 589–595 (2006).

    Article  PubMed  Google Scholar 

  52. Jackson, A. C., Scott, C. A., Owen, J., Weli, S. C. & Rossiter, J. P. Therapy with minocycline aggravates experimental rabies in mice. J. Virol. 81, 6248–6253 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Henke, A. et al. Apoptosis in coxsackievirus B3-caused diseases: interaction between the capsid protein VP2 and the proapoptotic protein siva. J. Virol. 74, 4284–4290 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Oleszak, E. L. et al. Apoptosis of infiltrating T cells in the central nervous system of mice infected with Theiler's murine encephalomyelitis virus. Virology 315, 110–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Shrestha, B. & Diamond, M. S. Fas ligand interactions contribute to CD8+ T-cell-mediated control of West Nile virus infection in the central nervous system. J. Virol. 81, 11749–11757 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, T. et al. IFN-γ-producing γδ T cells help control murine West Nile virus infection. J. Immunol. 171, 2524–2531 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Huber, S. A., Born, W. & O'Brien, R. Dual functions of murine γδ cells in inflammation and autoimmunity in coxsackievirus B3-induced myocarditis: role of Vγ1+ and Vγ4+ cells. Microbes Infect. 7, 537–543 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Machida, K. et al. Inhibition of cytochrome c release in Fas-mediated signaling pathway in transgenic mice induced to express hepatitis C viral proteins. J. Biol. Chem. 276, 12140–12146 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Weant, A. E. et al. Apoptosis regulators Bim and Fas function concurrently to control autoimmunity and CD8+ T cell contraction. Immunity 28, 218–230 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Fischer, S. F., Belz, G. T. & Strasser, A. BH3-only protein Puma contributes to death of antigen-specific T cells during shutdown of an immune response to acute viral infection. Proc. Natl Acad. Sci. USA 105, 3035–3040 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Budd, R. C. Activation-induced cell death. Curr. Opin. Immunol. 13, 356–362 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Mohindru, M., Kang, B. & Kim, B. S. Initial capsid-specific CD4+ T cell responses protect against Theiler's murine encephalomyelitis virus-induced demyelinating disease. Eur. J. Immunol. 36, 2106–2115 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Palma, J. P., Yauch, R. L., Lang, S. & Kim, B. S. Potential role of CD4+ T cell-mediated apoptosis of activated astrocytes in Theiler's virus-induced demyelination. J. Immunol. 162, 6543–6551 (1999).

    CAS  PubMed  Google Scholar 

  64. Kimura, T. & Griffin, D. E. Extensive immune-mediated hippocampal damage in mice surviving infection with neuroadapted Sindbis virus. Virology 311, 28–39 (2003). CD4+ T cells were shown to promote progressive neuronal death and tissue injury following sindbis virus infection, despite clearance of infectious virus.

    Article  CAS  PubMed  Google Scholar 

  65. Huber, S. A., Budd, R. C., Rossner, K. & Newell, M. K. Apoptosis in coxsackievirus B3-induced myocarditis and dilated cardiomyopathy. Ann. NY Acad. Sci. 887, 181–190 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Kondo, T., Suda, T., Fukuyama, H., Adachi, M. & Nagata, S. Essential roles of the Fas ligand in the development of hepatitis. Nature Med. 3, 409–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Soguero, C. et al. Hepatitis C virus core protein leads to immune suppression and liver damage in a transgenic murine model. J. Virol. 76, 9345–9354 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Iken, K., Huang, L., Bekele, H., Schmidt, E. V. & Koziel, M. J. Apoptosis of activated CD4+ and CD8+ T cells is enhanced by co-culture with hepatocytes expressing hepatitis C virus (HCV) structural proteins through FasL induction. Virology 346, 363–372 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Gujar, S. A., Jenkins, A. K., Guy, C. S., Wang, J. & Michalak, T. I. Aberrant lymphocyte activation precedes delayed virus-specific T-cell response after both primary infection and secondary exposure to hepadnavirus in the woodchuck model of hepatitis B virus infection. J. Virol. 82, 6992–7008 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Baloul, L., Camelo, S. & Lafon, M. Up-regulation of Fas ligand (FasL) in the central nervous system: a mechanism of immune evasion by rabies virus. J. Neurovirol. 10, 372–382 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Cicin-Sain, L. et al. Dominant-negative FADD rescues the in vivo fitness of a cytomegalovirus lacking an antiapoptotic viral gene. J. Virol. 82, 2056–2064 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Maher, S. G., Romero-Weaver, A. L., Scarzello, A. J. & Gamero, A. M. Interferon: cellular executioner or white knight? Curr. Med. Chem. 14, 1279–1289 2007).

    Article  CAS  PubMed  Google Scholar 

  73. Sato, K. et al. Antiviral response by natural killer cells through TRAIL gene induction by IFN-α/β. Eur. J. Immunol. 31, 3138–3146 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Randall, R. E. & Goodbourn, S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J. Gen. Virol. 89, 1–47 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Mumphrey, S. M. et al. Murine norovirus 1 infection is associated with histopathological changes in immunocompetent hosts, but clinical disease is prevented by STAT1-dependent interferon responses. J. Virol. 81, 3251–3263 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Goody, R. J., Beckham, J. D., Rubtsova, K. & Tyler, K. L. JAK–STAT signaling pathways are activated in the brain following reovirus infection. J. Neurovirol. 13, 373–383 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zurney, J., Howard, K. E. & Sherry, B. Basal expression levels of IFNAR and Jak–STAT components are determinants of cell-type-specific differences in cardiac antiviral responses. J. Virol. 81, 13668–13680 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Daffis, S. et al. Interferon regulatory factor IRF-7 induces the antiviral alpha interferon response and protects against lethal West Nile virus infection. J. Virol. 82, 8465–8475 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Daffis, S., Samuel, M. A., Suthar, M. S., Gale, M. Jr & Diamond, M. S. Toll-like receptor-3 has a protective role against West Nile virus infection. J. Virol. 82, 10349–10358 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Daffis, S., Samuel, M. A., Keller, B. C., Gale, M. Jr & Diamond, M. S. Cell-specific IRF-3 responses protect against West Nile virus infection by interferon-dependent and -independent mechanisms. PLoS Pathog. 3, e106 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Thorburn, A. Death receptor-induced cell killing. Cell. Signal. 16, 139–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Schneider, P. & Tschopp, J. Apoptosis induced by death receptors. Pharm. Acta Helv. 74, 281–286 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Ware, C. F., VanArsdale, S. & VanArsdale, T. L. Apoptosis mediated by the TNF-related cytokine and receptor families. J. Cell. Biochem. 60, 47–55 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Mundt, B. et al. Involvement of TRAIL and its receptors in viral hepatitis. FASEB J. 17, 94–96 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Green, D. R. Apoptotic pathways: ten minutes to dead. Cell 121, 671–674 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Ott, M., Gogvadze, V., Orrenius, S. & Zhivotovsky, B. Mitochondria, oxidative stress and cell death. Apoptosis 12, 913–922 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Kyto, V. et al. Glutathione depletion and cardiomyocyte apoptosis in viral myocarditis. Eur. J. Clin. Invest. 34, 167–175 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Colston, J. T., Chandrasekar, B. & Freeman, G. L. Expression of apoptosis-related proteins in experimental coxsackievirus myocarditis. Cardiovasc. Res. 38, 158–168 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. San Miguel, B., Alvarez, M., Culebras, J. M., Gonzalez-Gallego, J. & Tunon, M. J. N-acetyl-cysteine protects liver from apoptotic death in an animal model of fulminant hepatic failure. Apoptosis 11, 1945–1957 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Wang, T. & Weinman, S. A. Causes and consequences of mitochondrial reactive oxygen species generation in hepatitis C. J. Gastroenterol. Hepatol. 21 (Suppl. 3), 34–37 (2006).

    Article  CAS  Google Scholar 

  92. Chang, M. L. et al. Acute expression of hepatitis C core protein in adult mouse liver: mitochondrial stress and apoptosis. Scand. J. Gastroenterol. 43, 747–755 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Clarke, P. et al. JNK regulates the release of proapoptotic mitochondrial factors in reovirus-infected cells. J. Virol. 78, 13132–13138 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mori, I. et al. The US3 protein kinase of herpes simplex virus attenuates the activation of the c-Jun N-terminal protein kinase signal transduction pathway in infected piriform cortex neurons of C57BL/6 mice. Neurosci. Lett. 351, 201–205 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Blaho, J. A. Virus infection and apoptosis (issue II) an introduction: cheating death or death as a fact of life? Int. Rev. Immunol. 23, 1–6 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Mori, I. et al. Herpes simplex virus US3 protein kinase regulates virus-induced apoptosis in olfactory and vomeronasal chemosensory neurons in vivo. Microbes Infect. 8, 1806–1812 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Levine, B., Goldman, J. E., Jiang, H. H., Griffin, D. E. & Hardwick, J. M. Bc1–2 protects mice against fatal alphavirus encephalitis. Proc. Natl Acad. Sci. USA 93, 4810–4815 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kyto, V. et al. Cardiomyocyte apoptosis after antiviral WIN 54954 treatment in murine coxsackievirus B3 myocarditis. Scand. Cardiovasc. J. 36, 187–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Erickson, N. et al. Temporal–spatial activation of apoptosis and epithelial injury in murine experimental biliary atresia. Hepatology 47, 1567–1577 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Johnston, C., Jiang, W., Chu, T. & Levine, B. Identification of genes involved in the host response to neurovirulent alphavirus infection. J. Virol. 75, 10431–10445 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, Z. C. et al. Effect of astragaloside on cardiomyocyte apoptosis in murine coxsackievirus B3 myocarditis. J. Asian Nat. Prod. Res. 9, 145–151 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Louboutin, J. P., Agrawal, L., Reyes, B. A., Van Bockstaele, E. J. & Strayer, D. S. Protecting neurons from HIV-1 gp120-induced oxidant stress using both localized intracerebral and generalized intraventricular administration of antioxidant enzymes delivered by SV40-derived vectors. Gene Ther. 14, 1650–1661 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Liu, Y. G. et al. Blockade of TRAIL pathway ameliorates HBV-induced hepatocyte apoptosis in an acute hepatitis model. Biochem. Biophys. Res. Commun. 352, 329–334 (2007). This study shows that recombinant human soluble death receptor 5 (sDR5) is a potential novel therapeutic drug for patients with fulminant hepatitis.

    Article  CAS  PubMed  Google Scholar 

  104. Swarup, V., Ghosh, J., Das, S. & Basu, A. Tumor necrosis factor receptor-associated death domain mediated neuronal death contributes to the glial activation and subsequent neuroinflammation in Japanese encephalitis. Neurochem. Int. 52, 1310–1321 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Swarup, V., Das, S., Ghosh, S. & Basu, A. Tumor necrosis factor receptor-1-induced neuronal death by TRADD contributes to the pathogenesis of Japanese encephalitis. J. Neurochem. 103, 771–783 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Hunter, A. M., LaCasse, E. C. & Korneluk, R. G. The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis 12, 1543–1568 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Youle, R. J. & Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nature Rev. Mol. Cell Biol. 9, 47–59 (2008).

    Article  CAS  Google Scholar 

  108. Chipuk, J. E. & Green, D. R. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol. 18, 157–164 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tournier, C. et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288, 870–874 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Lei, K. et al. The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH2-terminal kinase. Mol. Cell Biol. 22, 4929–4942 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lei, K. & Davis, R. J. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc. Natl Acad. Sci. USA 100, 2432–2437 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Deng, Y., Ren, X., Yang, L., Lin, Y. & Wu, X. A JNK-dependent pathway is required for TNFα-induced apoptosis. Cell 115, 61–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Putcha, G. V. et al. JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 38, 899–914 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Papadakis, E. S. et al. The regulation of Bax by c-Jun N-terminal protein kinase (JNK) is a prerequisite to the mitochondrial-induced apoptotic pathway. FEBS Lett. 580, 1320–1326 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Hsu, W. H. et al. Berberine induces apoptosis in SW620 human colonic carcinoma cells through generation of reactive oxygen species and activation of JNK/p38 MAPK and FasL. Arch. Toxicol. 81, 719–728 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Koide, N. et al. Lipopolysaccharide and interferon-γ enhance Fas-mediated cell death in mouse vascular endothelial cells via augmentation of Fas expression. Clin. Exp. Immunol. 150, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Guan, Q. H. et al. Neuroprotection against ischemic brain injury by SP600125 via suppressing the extrinsic and intrinsic pathways of apoptosis. Brain Res. 1092, 36–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Harwood, F. G. et al. Regulation of FasL by NF-κB and AP-1 in Fas-dependent thymineless death of human colon carcinoma cells. J. Biol. Chem. 275, 10023–10029 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Takada, E. et al. Interferon-β-induced activation of c-Jun NH2-terminal kinase mediates apoptosis through up-regulation of CD95 in CH31 B lymphoma cells. Exp. Cell Res. 304, 518–530 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Xu, X. N. et al. Induction of Fas ligand expression by HIV involves the interaction of Nef with the T cell receptor zeta chain. J. Exp. Med. 189, 1489–1496 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yang, S. H. et al. Involvement of c-Jun N-terminal kinase in G2/M arrest and FasL-mediated apoptosis induced by a novel indoloquinoline derivative, IQDMA, in K562 cells. Leuk. Res. 31, 1413–1420 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Liang, S. H., Zhang, W., McGrath, B. C., Zhang, P. & Cavener, D. R. PERK (eIF2α kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate-early genes upon disruption of ER calcium homoeostasis. Biochem. J. 393, 201–209 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Juo, P. et al. FADD is required for multiple signaling events downstream of the receptor Fas. Cell Growth Differ. 10, 797–804 (1999).

    CAS  PubMed  Google Scholar 

  125. Brahic, M., Stroop, W. G. & Baringer, J. R. Theiler's virus persists in glial cells during demyelinating disease. Cell 26, 123–128 (1981).

    Article  CAS  PubMed  Google Scholar 

  126. Rodriguez, M., Oleszak, E. & Leibowitz, J. Theiler's murine encephalomyelitis: a model of demyelination and persistence of virus. Crit. Rev. Immunol. 7, 325–365 (1987).

    CAS  PubMed  Google Scholar 

  127. Theiler, M. Spontaneous encephalomyelitis of mice — a new virus disease. Science 80, 122 (1934).

    Article  CAS  PubMed  Google Scholar 

  128. Griffin, D. E. Neuronal cell death in alphavirus encephalomyelitis. Curr. Top. Microbiol. Immunol. 289, 57–77 (2005).

    CAS  PubMed  Google Scholar 

  129. Samuel, M. A. et al. PKR and RNase L contribute to protection against lethal West Nile Virus infection by controlling early viral spread in the periphery and replication in neurons. J. Virol. 80, 7009–7019 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang, S. et al. A mutation in the envelope protein fusion loop attenuates mouse neuroinvasiveness of the NY99 strain of West Nile virus. Virology 353, 35–40 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Tyler, K. L. et al. Linkage between reovirus-induced apoptosis and inhibition of cellular DNA synthesis: role of the S1 and M2 genes. J. Virol. 70, 7984–7991 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Huber, S. A. Coxsackievirus-induced myocarditis is dependent on distinct immunopathogenic responses in different strains of mice. Lab. Invest. 76, 691–701 (1997).

    CAS  PubMed  Google Scholar 

  133. Sherry, B. Pathogenesis of reovirus myocarditis. Curr. Top. Microbiol. Immunol. 233, 51–66 (1998).

    CAS  PubMed  Google Scholar 

  134. Sherry, B., Li, X. Y., Tyler, K. L., Cullen, J. M. & Virgin, H. W. Lymphocytes protect against and are not required for reovirus-induced myocarditis. J. Virol. 67, 6119–6124 (1993). This study shows that humoral immunity and cellular immunity are protective against, and not required for, reovirus-induced myocarditis and reveals that the potential to induce cardiac damage is independent of lymphocyte-based immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratory was supported by the National Institutes of Health (grant numbers T32AI07537, 5RO1NS050138 and 1RO1NS051403) and a VA Merit and Career Development Award. K.L.T. is supported by the Reuler–Lewin Family Professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penny Clarke.

Related links

Related links

DATABASES

Entrez Genome

BDV

HBV

HCV

HIV-1

HSV-1

rabies virus

SINV

VEE

WNV

Glossary

Extrinsic apoptotic pathway

An apoptotic signalling pathway that is triggered by the binding of ligands to cell-surface death receptors and culminates in the activation of the initiator caspase, caspase 8.

Intrinsic apoptotic pathway

An apoptotic signalling pathway that involves the release of pro-apoptotic factors from the mitochondria and activation of the initiator caspase, caspase 9.

Cytotoxic T lymphocyte

A T lymphocyte that induces the death of pathogen-infected cells.

Oligonucleosomal DNA laddering

A generally accepted biochemical criterion of apoptosis that involves cleavage of DNA into 180 bp fragments by a caspase-activated DNase.

TUNEL

(Terminal deoxynucleotidyl transferase dUTP nick end labelling). A method used to label free ends of DNA, which increase during apoptosis owing to the action of a caspase-activated DNase.

Astrogliosis

An abnormal increase in the number of astrocytes.

Microglial proliferation

An abnormal increase in the number of microglia.

Inducible nitric oxide synthase

An enzyme involved in the generation of nitric oxide, which can result in cell death through apoptosis or necrosis.

Macrophage

A cell within tissues that originates from specific white blood cells called monocytes. Monocytes and macrophages are phagocytes that engulf and then digest cellular debris and pathogens. They also stimulate lymphocytes to respond to the pathogen.

Lymphocyte

A white blood cell from the vertebrate immune system. Lymphocytes include large granular lymphocytes, commonly known as natural killer (NK) cells, and small lymphocytes (T and B cells). NK cells are a part of the innate immune system and help defend the host from tumours and virally infected cells by releasing cytotoxic granules. T cells and B cells are the main cellular components of the adaptive immune response. B lymphocytes respond to pathogens by producing large quantities of antibodies that neutralize foreign objects, such as bacteria and viruses. T cells include helper T cells, which produce cytokines that direct the immune response, and cytotoxic T cells, which induce the death of pathogen-infected cells.

Neutrophil

The most abundant type of white blood cell in humans. Neutrophils are normally found in the bloodstream and form an essential part of the immune system. However, during the acute phase of inflammation, neutrophils migrate towards the site of inflammation, usually as a result of bacterial infection.

Fas ligand

A member of the tumour necrosis factor family of cytokines that triggers apoptosis following the binding of cell-surface receptors.

TRAIL

(Tumour necrosis factor (TNF)-related apoptosis inducing ligand). A member of the TNF family of cytokines that triggers apoptosis following the binding of cell-surface receptors.

Microglia

A type of glial cell that acts as the first and main form of active immune defence in the central nervous system.

Astrocyte

A type of non-neuronal glial cell that performs many functions, including biochemical support of endothelial cells, that form the blood–brain barrier, provision of nutrients to the nervous tissue and aiding the repair and scarring process in the brain.

Reactive oxygen species

(ROS). Highly reactive ions or very small molecules that include oxygen ions, free radicals and peroxides. During oxidative stress, increased ROS levels can result in substantial damage to cell structures.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, P., Tyler, K. Apoptosis in animal models of virus-induced disease. Nat Rev Microbiol 7, 144–155 (2009). https://doi.org/10.1038/nrmicro2071

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2071

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing