Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Viral infection and iron metabolism

Key Points

  • The central role of iron in fundamental processes of cellular physiology is briefly summarized. These processes must be operational for efficient viral replication, and therefore cells that are replete in iron make good homes for viruses.

  • Iron homeostasis in humans is outlined, and the action of the liver hormone hepcidin is described. Hepcidin maintains iron balance, and its synthesis is regulated by many proteins, one of which is HFE.

  • Iron overload is a risk factor for severe disease in hepatitis C virus (HCV) infection. HCV itself manipulates cellular iron transport and influences hepcidin synthesis.

  • In individuals infected with HIV-1, iron accumulation is associated with increased mortality. Iron accumulation in macrophages might favour virus replication, benefit secondary pathogens and lead to anaemia.

  • The HIV-1 protein Nef and the human cytomegalovirus (HCMV) protein US2 target HFE and therefore regulate iron transport.

  • New World haemorrhagic arenaviruses, canine and feline parvoviruses and mouse mammary tumour virus all use the host protein transferrin receptor 1 to gain entry to cells. In this way, these viruses infect activated, iron-acquiring cells, which can facilitate their replication.

  • Limiting iron availability to infected cells by iron chelators curbs the growth of HIV-1, HCMV, vaccinia virus, herpes simplex virus 1 and hepatitis B virus in vitro. In patients who are infected with HCV, iron removal ameliorates disease.

  • Together, these studies indicate that viruses directly manipulate iron homeostasis and that virally induced changes in iron transport are associated with altered disease states.

Abstract

Fundamental cellular operations, including DNA synthesis and the generation of ATP, require iron. Viruses hijack cells in order to replicate, and efficient replication needs an iron-replete host. Some viruses selectively infect iron-acquiring cells by binding to transferrin receptor 1 during cell entry. Other viruses alter the expression of proteins involved in iron homeostasis, such as HFE and hepcidin. In HIV-1 and hepatitis C virus infections, iron overload is associated with poor prognosis and could be partly caused by the viruses themselves. Understanding how iron metabolism and viral infection interact might suggest new methods to control disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fundamental aspects of cellular function are dependent on iron.
Figure 2: Iron transport in humans.
Figure 3: Iron homeostasis in humans.
Figure 4: Involvement of iron in the HIV-1 life cycle.
Figure 5: Viral proteins target host proteins of iron metabolism.

Similar content being viewed by others

References

  1. Ajioka, R. S., Phillips, J. D. & Kushner, J. P. Biosynthesis of heme in mammals. Biochim. Biophys. Acta 1763, 723–736 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Hatefi, Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu. Rev. Biochem. 54, 1015–1069 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Schneider-Yin, X. et al. Mutations in the iron–sulfur cluster ligands of the human ferrochelatase lead to erythropoietic protoporphyria. Blood 96, 1545–1549 (2000).

    CAS  PubMed  Google Scholar 

  4. Jordan, A. & Reichard, P. Ribonucleotide reductases. Annu. Rev. Biochem. 67, 71–98 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Pang, H. et al. Crystal structure of human pirin: an iron-binding nuclear protein and transcription cofactor. J. Biol. Chem. 279, 1491–1498 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Klinge, S., Hirst, J., Maman, J. D., Krude, T. & Pellegrini, L. An iron–sulfur domain of the eukaryotic primase is essential for RNA primer synthesis. Nature Struct. Mol. Biol. 14, 875–877 (2007).

    Article  CAS  Google Scholar 

  7. Rudolf, J., Makrantoni, V., Ingledew, W. J., Stark, M. J. & White, M. F. The DNA repair helicases XPD and FancJ have essential iron–sulfur domains. Mol. Cell 23, 801–808 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, Z. Q. et al. The essential vertebrate ABCE1 protein interacts with eukaryotic initiation factors. J. Biol. Chem. 281, 7452–7457 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Umbreit, J. Iron deficiency: a concise review. Am. J. Hematol. 78, 225–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Schaible, U. E. & Kaufmann, S. H. Iron and microbial infection. Nature Rev. Microbiol. 2, 946–953 (2004).

    Article  CAS  Google Scholar 

  11. Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315, 612–617 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Boyd, P. W. et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407, 695–702 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Suttle, C. A. Marine viruses — major players in the global ecosystem. Nature Rev. Microbiol. 5, 801–812 (2007).

    Article  CAS  Google Scholar 

  14. Suttle, C. A. Viruses in the sea. Nature 437, 356–361 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. McCance, R. A. & Widdowson, E. M. Absorption and excretion of iron. Lancet 2, 680–684 (1937). Landmark paper in the field of iron metabolism in which the authors propose that iron balance is maintained not by altering iron excretion, but by regulating absorption of iron from the diet.

    Article  Google Scholar 

  16. McCance, R. A. & Widdowson, E. M. The absorption and excretion of iron following oral and intravenous administration. J. Physiol. 94, 148–154 (1938).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andrews, N. C. & Schmidt, P. J. Iron homeostasis. Annu. Rev. Physiol. 69, 69–85 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. McKie, A. T. et al. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291, 1755–1759 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Gunshin, H. et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Shayeghi, M. et al. Identification of an intestinal heme transporter. Cell 122, 789–801 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Abboud, S. & Haile, D. J. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 275, 19906–19912 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Donovan, A. et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403, 776–781 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. McKie, A. T. et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell 5, 299–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Vulpe, C. D. et al. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nature Genet. 21, 195–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Dautry-Varsat, A., Ciechanover, A. & Lodish, H. F. pH and the recycling of transferrin during receptor-mediated endocytosis. Proc. Natl Acad. Sci. USA 80, 2258–2262 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klausner, R. D., Ashwell, G., van Renswoude, J., Harford, J. B. & Bridges, K. R. Binding of apotransferrin to K562 cells: explanation of the transferrin cycle. Proc. Natl Acad. Sci. USA 80, 2263–2266 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ohgami, R. S. et al. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nature Genet. 37, 1264–1269 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Nemeth, E. & Ganz, T. Regulation of iron metabolism by hepcidin. Annu. Rev. Nutr. 26, 323–342 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Krause, A. et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 480, 147–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Nicolas, G. et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc. Natl Acad. Sci. USA 98, 8780–8785 (2001). Serendipitous discovery of hepcidin and its link with iron homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park, C. H., Valore, E. V., Waring, A. J. & Ganz, T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 276, 7806–7810 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004). Identified the mechanism of action of hepcidin, the iron regulatory hormone.

    Article  CAS  PubMed  Google Scholar 

  33. Nicolas, G. et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J. Clin. Invest. 110, 1037–1044 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Feder, J. N. et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nature Genet. 13, 399–408 (1996). Cloned HLA-H (later renamed HFE ), the gene that is most commonly associated with haemochromatosis.

    Article  CAS  PubMed  Google Scholar 

  35. Papanikolaou, G. et al. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nature Genet. 36, 77–82 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Nemeth, E., Roetto, A., Garozzo, G., Ganz, T. & Camaschella, C. Hepcidin is decreased in TFR2 hemochromatosis. Blood 105, 1803–1806 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Njajou, O. T. et al. A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. Nature Genet. 28, 213–214 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Roetto, A. et al. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nature Genet. 33, 21–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Nemeth, E. et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Invest. 113, 1271–1276 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peyssonnaux, C. et al. TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood 107, 3727–3732 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nemeth, E. et al. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 101, 2461–2463 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Kulaksiz, H. et al. The iron-regulatory peptide hormone hepcidin: expression and cellular localization in the mammalian kidney. J. Endocrinol. 184, 361–370 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Kowdley, K. V. Iron, hemochromatosis, and hepatocellular carcinoma. Gastroenterology 127, S79–S86 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Bacon, B. R., Tavill, A. S., Brittenham, G. M., Park, C. H. & Recknagel, R. O. Hepatic lipid peroxidation in vivo in rats with chronic iron overload. J. Clin. Invest. 71, 429–439 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Galli, A. et al. Oxidative stress stimulates proliferation and invasiveness of hepatic stellate cells via a MMP2-mediated mechanism. Hepatology 41, 1074–1084 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Poynard, T., Yuen, M. F., Ratziu, V. & Lai, C. L. Viral hepatitis C. Lancet 362, 2095–2100 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Fujita, N. et al. Hepatic iron accumulation is associated with disease progression and resistance to interferon/ribavirin combination therapy in chronic hepatitis C. J. Gastroenterol. Hepatol. 22, 1886–1893 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Thursz, M. Iron, haemochromatosis and thalassaemia as risk factors for fibrosis in hepatitis C virus infection. Gut 56, 613–614 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gardenghi, S. et al. Ineffective erythropoiesis in β-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. Blood 109, 5027–5035 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sartori, M. et al. Heterozygous β-globin gene mutations as a risk factor for iron accumulation and liver fibrosis in chronic hepatitis C. Gut 56, 693–698 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Parkkila, S. et al. Association of the transferrin receptor in human placenta with HFE, the protein defective in hereditary hemochromatosis. Proc. Natl Acad. Sci. USA 94, 13198–13202 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Drakesmith, H. et al. The hemochromatosis protein HFE inhibits iron export from macrophages. Proc. Natl Acad. Sci. USA 99, 15602–15607 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Piperno, A. et al. Blunted hepcidin response to oral iron challenge in HFE-related hemochromatosis. Blood 110, 4096–4100 (2007). An insightful study which demonstrated that HFE couples the level of iron in the blood (transferrin saturation) to hepcidin synthesis.

    Article  CAS  PubMed  Google Scholar 

  54. Beutler, E., Felitti, V. J., Koziol, J. A., Ho, N. J. & Gelbart, T. Penetrance of 845G→A (C282Y) HFE hereditary haemochromatosis mutation in the USA. Lancet 359, 211–218 (2002).

    Article  PubMed  Google Scholar 

  55. Gattoni, A. et al. Role of hemochromatosis genes in chronic hepatitis C. Clin. Ter. 157, 61–68 (2006).

    CAS  PubMed  Google Scholar 

  56. Nahon, P. et al. Liver iron, HFE gene mutations, and hepatocellular carcinoma occurrence in patients with cirrhosis. Gastroenterology 134, 102–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Di Bisceglie, A. M., Axiotis, C. A., Hoofnagle, J. H. & Bacon, B. R. Measurements of iron status in patients with chronic hepatitis. Gastroenterology 102, 2108–2113 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Fujita, N. & Takei, Y. Iron, hepatitis C virus, and hepatocellular carcinoma: iron reduction preaches the gospel for chronic hepatitis C. J. Gastroenterol. 42, 923–926 (2007).

    Article  PubMed  Google Scholar 

  59. Haque, S., Chandra, B., Gerber, M. A. & Lok, A. S. Iron overload in patients with chronic hepatitis C: a clinicopathologic study. Hum. Pathol. 27, 1277–1281 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Fujita, N. et al. Hepcidin expression in the liver: relatively low level in patients with chronic hepatitis C. Mol. Med. 13, 97–104 (2007). Identified hepcidin suppression as a possible mechanism for iron overload in HCV.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Saito, H. et al. Up-regulation of transferrin receptor 1 in chronic hepatitis C: implication in excess hepatic iron accumulation. Hepatol. Res. 31, 203–210 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Takeo, M. et al. Upregulation of transferrin receptor 2 and ferroportin 1 mRNA in the liver of patients with chronic hepatitis C. J. Gastroenterol. Hepatol. 20, 562–569 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Theurl, I. et al. Iron regulates hepatitis C virus translation via stimulation of expression of translation initiation factor 3. J. Infect. Dis. 190, 819–825 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Kakizaki, S. et al. Iron enhances hepatitis C virus replication in cultured human hepatocytes. Liver 20, 125–128 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Fillebeen, C. et al. Iron inactivates the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C virus. J. Biol. Chem. 280, 9049–9057 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Fillebeen, C. et al. Expression of the subgenomic hepatitis C virus replicon alters iron homeostasis in Huh7 cells. J. Hepatol. 47, 12–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Furutani, T. et al. Hepatic iron overload induces hepatocellular carcinoma in transgenic mice expressing the hepatitis C virus polyprotein. Gastroenterology 130, 2087–2098 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Nishina, S. et al. Hepatitis C virus-induced reactive oxygen species raise hepatic iron level in mice by reducing hepcidin transcription. Gastroenterology 134, 226–238 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Farci, P. et al. The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies. Science 288, 339–344 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Kato, J. et al. Long-term phlebotomy with low-iron diet therapy lowers risk of development of hepatocellular carcinoma from chronic hepatitis C. J. Gastroenterol. 42, 830–836 (2007). Showed that iron-reduction therapy can be beneficial in the context of HCV infection.

    Article  CAS  PubMed  Google Scholar 

  71. Stebbing, J., Gazzard, B. & Douek, D. C. Where does HIV live? N. Engl. J. Med. 350, 1872–1880 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Kaufmann, S. H. & McMichael, A. J. Annulling a dangerous liaison: vaccination strategies against AIDS and tuberculosis. Nature Med. 11, S33–S44 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. McDermid, J. M. et al. Elevated iron status strongly predicts mortality in West African adults with HIV infection. J. Acquir. Immune Defic. Syndr. 46, 498–507 (2007). From a large cohort of patients with HIV-1, showed that high iron status, measured by a range of indicators, strongly predicts accelerated mortality even after adjustment for markers of inflammation and immune function.

    Article  PubMed  Google Scholar 

  74. de Monye, C., Karcher, D. S., Boelaert, J. R. & Gordeuk, V. R. Bone marrow macrophage iron grade and survival of HIV-seropositive patients. AIDS 13, 375–380 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Montaner, L. J. et al. Advances in macrophage and dendritic cell biology in HIV-1 infection stress key understudied areas in infection, pathogenesis, and analysis of viral reservoirs. J. Leukoc. Biol. 80, 961–964 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Nabel, G. & Baltimore, D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326, 711–713 (1987).

    Article  CAS  PubMed  Google Scholar 

  77. Xiong, S. et al. Signaling role of intracellular iron in NF-κB activation. J. Biol. Chem. 278, 17646–17654 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Chen, L. et al. Iron causes interactions of TAK1, p21ras, and phosphatidylinositol 3-kinase in caveolae to activate IKK kinase in hepatic macrophages. J. Biol. Chem. 282, 5582–5588 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Brady, J. & Kashanchi, F. Tat gets the “green” light on transcription initiation. Retrovirology 2, 69 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Laspia, M. F., Rice, A. P. & Mathews, M. B. HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell 59, 283–292 (1989).

    Article  CAS  PubMed  Google Scholar 

  81. Weinberger, L. S., Dar, R. D. & Simpson, M. L. Transient-mediated fate determination in a transcriptional circuit of HIV. Nature Genet. 40, 466–470 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Yang, X. et al. TAK, an HIV Tat-associated kinase, is a member of the cyclin-dependent family of protein kinases and is induced by activation of peripheral blood lymphocytes and differentiation of promonocytic cell lines. Proc. Natl Acad. Sci. USA 94, 12331–12336 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nekhai, S. & Jeang, K. T. Transcriptional and post-transcriptional regulation of HIV-1 gene expression: role of cellular factors for Tat and Rev. Future Microbiol. 1, 417–426 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Debebe, Z. et al. Iron chelators ICL670 and 311 inhibit HIV-1 transcription. Virology 367, 324–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Gao, J. & Richardson, D. R. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents, IV: the mechanisms involved in inhibiting cell-cycle progression. Blood 98, 842–850 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Ruhl, M. et al. Eukaryotic initiation factor 5A is a cellular target of the human immunodeficiency virus type 1 Rev activation domain mediating trans-activation. J. Cell Biol. 123, 1309–1320 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Cooper, H. L., Park, M. H., Folk, J. E., Safer, B. & Braverman, R. Identification of the hypusine-containing protein hy+ as translation initiation factor eIF-4D. Proc. Natl Acad. Sci. USA 80, 1854–1857 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kim, Y. S. et al. Deoxyhypusine hydroxylase is an Fe(II)-dependent, HEAT-repeat enzyme. Identification of amino acid residues critical for Fe(II) binding and catalysis. J. Biol. Chem. 281, 13217–13225 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Hauber, I. et al. Identification of cellular deoxyhypusine synthase as a novel target for antiretroviral therapy. J. Clin. Invest. 115, 76–85 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zimmerman, C. et al. Identification of a host protein essential for assembly of immature HIV-1 capsids. Nature 415, 88–92 (2002). The iron-containing protein ABCE1 was shown to have a role in HIV-1 virion assembly.

    Article  CAS  PubMed  Google Scholar 

  91. Dong, J. et al. The essential ATP-binding cassette protein RLI1 functions in translation by promoting preinitiation complex assembly. J. Biol. Chem. 279, 42157–42168 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Kispal, G. et al. Biogenesis of cytosolic ribosomes requires the essential iron–sulphur protein Rli1p and mitochondria. EMBO J. 24, 589–598 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yarunin, A. et al. Functional link between ribosome formation and biogenesis of iron–sulfur proteins. EMBO J. 24, 580–588 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dooher, J. E. & Lingappa, J. R. Conservation of a stepwise, energy-sensitive pathway involving HP68 for assembly of primate lentivirus capsids in cells. J. Virol. 78, 1645–1656 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dooher, J. E., Schneider, B. L., Reed, J. C. & Lingappa, J. R. Host ABCE1 is at plasma membrane HIV assembly sites and its dissociation from Gag is linked to subsequent events of virus production. Traffic 8, 195–211 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lingappa, J. R., Dooher, J. E., Newman, M. A., Kiser, P. K. & Klein, K. C. Basic residues in the nucleocapsid domain of Gag are required for interaction of HIV-1 gag with ABCE1 (HP68), a cellular protein important for HIV-1 capsid assembly. J. Biol. Chem. 281, 3773–3784 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Traore, H. N. & Meyer, D. The effect of iron overload on in vitro HIV-1 infection. J. Clin. Virol. 31 (Suppl. 1), 92–98 (2004).

    Article  CAS  Google Scholar 

  98. Boelaert, J. R., Vandecasteele, S. J., Appelberg, R. & Gordeuk, V. R. The effect of the host's iron status on tuberculosis. J. Infect. Dis. 195, 1745–1753 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Orenstein, J. M., Fox, C. & Wahl, S. M. Macrophages as a source of HIV during opportunistic infections. Science 276, 1857–1861 (1997). Showed that HIV-1 can be produced in high levels from macrophages that are co-infected with other pathogens.

    Article  CAS  PubMed  Google Scholar 

  100. Knutson, M. & Wessling-Resnick, M. Iron metabolism in the reticuloendothelial system. Crit. Rev. Biochem. Mol. Biol. 38, 61–88 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Weiss, G. & Goodnough, L. T. Anemia of chronic disease. N. Engl. J. Med. 352, 1011–1023 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Lundgren, J. D. & Mocroft, A. Anemia and survival in human immunodeficiency virus. Clin. Infect. Dis. 37 (Suppl. 4), 297–303 (2003).

    Article  Google Scholar 

  103. O'Brien, M. E. et al. Anemia is an independent predictor of mortality and immunologic progression of disease among women with HIV in Tanzania. J. Acquir. Immune Defic. Syndr. 40, 219–225 (2005).

    Article  PubMed  Google Scholar 

  104. Kristiansen, M. et al. Identification of the haemoglobin scavenger receptor. Nature 409, 198–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Schaer, D. J. et al. CD163 is the macrophage scavenger receptor for native and chemically modified hemoglobins in the absence of haptoglobin. Blood 107, 373–380 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Delanghe, J. R. et al. Haptoglobin polymorphism, iron metabolism and mortality in HIV infection. AIDS 12, 1027–1032 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Roberts, E. S. et al. Induction of pathogenic sets of genes in macrophages and neurons in NeuroAIDS. Am. J. Pathol. 162, 2041–2057 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mulero, V., Searle, S., Blackwell, J. M. & Brock, J. H. Solute carrier 11a1 (Slc11a1; formerly Nramp1) regulates metabolism and release of iron acquired by phagocytic, but not transferrin-receptor-mediated, iron uptake. Biochem. J. 363, 89–94 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Marquet, S. et al. Variants of the human NRAMP1 gene and altered human immunodeficiency virus infection susceptibility. J. Infect. Dis. 180, 1521–1525 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Chen, N. et al. HIV-1 down-regulates the expression of CD1d via Nef. Eur. J. Immunol. 36, 278–286 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Schwartz, O., Marechal, V., Le Gall, S., Lemonnier, F. & Heard, J. M. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nature Med. 2, 338–342 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Drakesmith, H. et al. HIV-1 Nef down-regulates the hemochromatosis protein HFE, manipulating cellular iron homeostasis. Proc. Natl Acad. Sci. USA 102, 11017–11022 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nielsen, P., Degen, O., Brummer, J. & Gabbe, E. E. Long-term survival in a patient with AIDS and hereditary haemochromatosis. Eur. J. Haematol. 63, 202–204 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Hewitt, E. W. The MHC class I antigen presentation pathway: strategies for viral immune evasion. Immunology 110, 163–169 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ben-Arieh, S. V. et al. Human cytomegalovirus protein US2 interferes with the expression of human HFE, a nonclassical class I major histocompatibility complex molecule that regulates iron homeostasis. J. Virol. 75, 10557–10562 (2001). The first paper to show that HFE can be a target for viral proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vahdati-Ben Arieh, S. et al. A single viral protein HCMV US2 affects antigen presentation and intracellular iron homeostasis by degradation of classical HLA class I and HFE molecules. Blood 101, 2858–2864 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Parrish, C. R. Pathogenesis of feline panleukopenia virus and canine parvovirus. Baillieres Clin. Haematol. 8, 57–71 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Parker, J. S. & Parrish, C. R. Cellular uptake and infection by canine parvovirus involves rapid dynamin-regulated clathrin-mediated endocytosis, followed by slower intracellular trafficking. J. Virol. 74, 1919–1930 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hueffer, K. & Parrish, C. R. Parvovirus host range, cell tropism and evolution. Curr. Opin. Microbiol. 6, 392–398 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Truyen, U., Evermann, J. F., Vieler, E. & Parrish, C. R. Evolution of canine parvovirus involved loss and gain of feline host range. Virology 215, 186–189 (1996).

    Article  CAS  PubMed  Google Scholar 

  121. Parker, J. S., Murphy, W. J., Wang, D., O'Brien, S. J. & Parrish, C. R. Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells. J. Virol. 75, 3896–3902 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hueffer, K. et al. The natural host range shift and subsequent evolution of canine parvovirus resulted from virus-specific binding to the canine transferrin receptor. J. Virol. 77, 1718–1726 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hueffer, K., Govindasamy, L., Agbandje-McKenna, M. & Parrish, C. R. Combinations of two capsid regions controlling canine host range determine canine transferrin receptor binding by canine and feline parvoviruses. J. Virol. 77, 10099–10105 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bowen, M. D., Peters, C. J. & Nichol, S. T. The phylogeny of New World (Tacaribe complex) arenaviruses. Virology 219, 285–290 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Radoshitzky, S. R. et al. Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature 446, 92–96 (2007). Identified the cellular receptor that links arenaviruses with iron metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Radoshitzky, S. R. et al. Receptor determinants of zoonotic transmission of New World hemorrhagic fever arenaviruses. Proc. Natl Acad. Sci. USA 105, 2664–2669 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Flanagan, M. L. et al. New World clade B arenaviruses can use transferrin receptor 1 (TfR1)-dependent and independent entry pathways, and glycoproteins from human pathogenic strains are associated with the use of TfR1. J. Virol. 82, 938–948 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Ross, S. R., Schofield, J. J., Farr, C. J. & Bucan, M. Mouse transferrin receptor 1 is the cell entry receptor for mouse mammary tumor virus. Proc. Natl Acad. Sci. USA 99, 12386–12390 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Oldenburg, J., Reignier, T., Flanagan, M. L., Hamilton, G. A. & Cannon, P. M. Differences in tropism and pH dependence for glycoproteins from the clade B1 arenaviruses: implications for receptor usage and pathogenicity. Virology 364, 132–139 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Lebron, J. A., West, A. P. Jr & Bjorkman, P. J. The hemochromatosis protein HFE competes with transferrin for binding to the transferrin receptor. J. Mol. Biol. 294, 239–245 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Wang, E., Albritton, L. & Ross, S. R. Identification of the segments of the mouse transferrin receptor 1 required for mouse mammary tumor virus infection. J. Biol. Chem. 281, 10243–10249 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Bastin, J., Drakesmith, H., Rees, M., Sargent, I. & Townsend, A. Localisation of proteins of iron metabolism in the human placenta and liver. Br. J. Haematol. 134, 532–543 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Mulvey, M. R., Fang, H., Holmes, C. F. & Scraba, D. G. The cellular U-particle, whose synthesis is induced by mengovirus infection, is homologous to apoferritin. Virology 198, 81–91 (1994).

    Article  CAS  PubMed  Google Scholar 

  134. Mulvey, M. R., Kuhn, L. C. & Scraba, D. G. Induction of ferritin synthesis in cells infected with Mengo virus. J. Biol. Chem. 271, 9851–9857 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Zoll, J., Melchers, W. J., Galama, J. M. & van Kuppeveld, F. J. The mengovirus leader protein suppresses alpha/beta interferon production by inhibition of the iron/ferritin-mediated activation of NF-κB. J. Virol. 76, 9664–9672 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gu, J. M. et al. HBx modulates iron regulatory protein 1-mediated iron metabolism via reactive oxygen species. Virus Res. 133, 167–177 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Neufeld, E. J. Oral chelators deferasirox and deferiprone for transfusional iron overload in thalassemia major: new data, new questions. Blood 107, 3436–3441 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Costagliola, D. G. et al. Dose of desferrioxamine and evolution of HIV-1 infection in thalassaemic patients. Br. J. Haematol. 87, 849–852 (1994).

    Article  CAS  PubMed  Google Scholar 

  139. Georgiou, N. A. et al. Inhibition of human immunodeficiency virus type 1 replication in human mononuclear blood cells by the iron chelators deferoxamine, deferiprone, and bleomycin. J. Infect. Dis. 181, 484–490 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Sappey, C. et al. Iron chelation decreases NF-κB and HIV type 1 activation due to oxidative stress. AIDS Res. Hum. Retroviruses 11, 1049–1061 (1995).

    Article  CAS  PubMed  Google Scholar 

  141. Georgiou, N. A. et al. Human immunodeficiency virus type 1 replication inhibition by the bidentate iron chelators CP502 and CP511 is caused by proliferation inhibition and the onset of apoptosis. Eur. J. Clin. Invest. 32 (Suppl. 1), 91–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Romeo, A. M., Christen, L., Niles, E. G. & Kosman, D. J. Intracellular chelation of iron by bipyridyl inhibits DNA virus replication: ribonucleotide reductase maturation as a probe of intracellular iron pools. J. Biol. Chem. 276, 24301–24308 (2001). A clear demonstration of how iron chelation can inhibit virus replication.

    Article  CAS  PubMed  Google Scholar 

  143. Chouteau, P. et al. Inhibition of hepatitis B virus production associated with high levels of intracellular viral DNA intermediates in iron-depleted HepG2.2.15 cells. J. Hepatol. 34, 108–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Crowe, W. E., Maglova, L. M., Ponka, P. & Russell, J. M. Human cytomegalovirus-induced host cell enlargement is iron dependent. Am. J. Physiol. Cell Physiol. 287, C1023–C1030 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Cinatl, J. Jr et al. In vitro inhibition of human cytomegalovirus replication by desferrioxamine. Antiviral Res. 25, 73–77 (1994).

    Article  CAS  PubMed  Google Scholar 

  146. Bernhardt, P. V. Coordination chemistry and biology of chelators for the treatment of iron overload disorders. Dalton Trans. 3214–3220 (2007).

  147. Weinberg, E. D. Iron withholding: a defense against viral infections. Biometals 9, 393–399 (1996).

    Article  CAS  PubMed  Google Scholar 

  148. Beck, M. A. Selenium and host defence towards viruses. Proc. Nutr. Soc. 58, 707–711 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. Beck, M. A. Selenium and vitamin E status: impact on viral pathogenicity. J. Nutr. 137, 1338–1340 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Beck, M. A., Shi, Q., Morris, V. C. & Levander, O. A. Rapid genomic evolution of a non-virulent coxsackievirus B3 in selenium-deficient mice results in selection of identical virulent isolates. Nature Med. 1, 433–436 (1995). Showed how viruses can evolve owing to changes in the oxidant status of the host.

    Article  CAS  PubMed  Google Scholar 

  151. Nelson, H. K. et al. Host nutritional selenium status as a driving force for influenza virus mutations. FASEB J. 15, 1846–1848 (2001).

    Article  CAS  Google Scholar 

  152. Li, W. & Beck, M. A. Selenium deficiency induced an altered immune response and increased survival following influenza A/Puerto Rico/8/34 infection. Exp. Biol. Med. (Maywood) 232, 412–419 (2007).

    CAS  Google Scholar 

  153. Beck, M. A., Shi, Q., Morris, V. C. & Levander, O. A. Benign coxsackievirus damages heart muscle in iron-loaded vitamin E-deficient mice. Free Radic. Biol. Med. 38, 112–116 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. McDermid, J. M. & Prentice, A. M. Iron and infection: effects of host iron status and the iron-regulatory genes haptoglobin and NRAMP1 (SLC11A1) on host–pathogen interactions in tuberculosis and HIV. Clin. Sci. (Lond.) 110, 503–524 (2006).

    Article  CAS  Google Scholar 

  155. Salhi, Y. et al. Serum ferritin, desferrioxamine, and evolution of HIV-1 infection in thalassemic patients. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 18, 473–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  156. Salmon-Ceron, D. et al. Lower survival in AIDS patients receiving dapsone compared with aerosolized pentamidine for secondary prophylaxis of Pneumocystis carinii pneumonia. J. Infect. Dis. 172, 656–664 (1995).

    Article  CAS  PubMed  Google Scholar 

  157. Gordeuk, V. R. et al. The association of serum ferritin and transferrin receptor concentrations with mortality in women with human immunodeficiency virus infection. Haematologica 91, 739–743 (2006).

    CAS  PubMed  Google Scholar 

  158. Friis, H. et al. Iron, haptoglobin phenotype, and HIV-1 viral load: a cross-sectional study among pregnant Zimbabwean women. J. Acquir. Immune Defic. Syndr. 33, 74–81 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. Kupka, R. et al. Iron status is an important cause of anemia in HIV-infected Tanzanian women but is not related to accelerated HIV disease progression. J. Nutr. 137, 2317–2323 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Simonart, T. et al. Iron as a potential co-factor in the pathogenesis of Kaposi's sarcoma? Int. J. Cancer 78, 720–726 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Eddowes, A. Armitage, P. Klenerman, A. McMichael and the anonymous reviewers for critical reading of the manuscript, B. Hider for helpful discussions and J. McDermid for the figure in box 2. H.D. is supported by the Beit Memorial Fellowship for Medical Research, the Medical Research Council UK and the Wellcome Trust, and A.P. is supported by the Medical Research Council UK.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez Genome

CPV

HBV

HCV

HIV-1

MMTV

Entrez Genome Project

Mycobacterium tuberculosis

Entrez Protein

ABCE1

Dcytb

DMT1

Gag

HCP1

HFE

Nef

Rev

Tat

Glossary

Reticuloendothelial system

The meshwork of connective tissue that contains immune cells, such as macrophages, and that surrounds tissues which are associated with the immune system, such as the spleen and lymph nodes.

Haemochromatosis

An inherited iron metabolism disorder that is caused by the chronic over-absorption of iron from the diet. The excess iron generates free radicals, which damage organs such as the liver and pancreas. Tissue damage owing to excess iron can also be a complication of other diseases, such as thalassaemia.

Acute-phase proteins

A group of proteins, including C-reactive protein and fibrinogen, the concentrations of which change in the blood in response to trauma, inflammation or disease. These proteins can be inhibitors or mediators of inflammatory processes.

Erythron

The red blood cells and their developing precursors within the bone marrow.

Thalassaemia

A group of related genetic blood disorders that result from mutations in the genes that encode either the α- or β-proteins of haemoglobin and cause anaemia of varying severity.

HCV polyprotein

After cell entry, the HCV RNA genome is translated into a single 3,000 amino acid long polyprotein, which is then processed into 10 viral proteins.

Viral quasi-species

RNA viruses (including HCV and HIV-1) can be genetically heterogeneous within a single host. One viral sequence can dominate, but other complex quasi-species are also present, the genomes of which are evolving and are interrelated to varying extents.

Hypusine

An unusual amino acid that is found in all eukaryotes and is formed by the post-translational modification of lysine. The only known protein to contain hypusine is eukaryotic initiation factor 5A.

Haptoglobin

A blood plasma protein that binds free haemoglobin; haptoglobin–haemoglobin complexes are then cleared by the reticuloendothelial system. Haptoglobin is composed of two chains, the α-chain and the β-chain. The β-chain is largely invariant, but the α-chain has two major alleles, Hp1 and Hp2, and the common variants are Hp1-1, Hp2-1 and Hp2-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drakesmith, H., Prentice, A. Viral infection and iron metabolism. Nat Rev Microbiol 6, 541–552 (2008). https://doi.org/10.1038/nrmicro1930

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1930

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing