Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Systems biology of persistent infection: tuberculosis as a case study

Key Points

  • Study of infectious diseases involves a broad range of research disciplines from molecular biology to population dynamics. This article discusses the ways in which mathematical modelling can be used to integrate studies across these different disciplines.

  • The article focuses on tuberculosis (TB) as an example of a complex persistent infection with a major impact on global health.

  • Approaches to integrate molecular and cellular research with epidemiology are illustrated by a discussion of host and pathogenic diversity in the context of population-based models of TB.

  • Analogous population-based mathematical approaches can be used to model the immune response during TB.

  • An alternative approach of agent-based modelling is illustrated by a description of key factors that regulate formation of granulomas in TB.

Abstract

The human immune response does an excellent job of clearing most of the pathogens that we encounter throughout our lives. However, some pathogens persist for the lifetime of the host. Despite many years of research, scientists have yet to determine the basis of persistence of most pathogens, and have therefore struggled to develop reliable prevention and treatment strategies. Systems biology provides a new and integrative tool that will help to achieve these goals. In this article, we use Mycobacterium tuberculosis as an example of how systems-biology approaches have begun to make strides in uncovering important facets of the host–pathogen interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blaser, M. J. & Kirschner, D. The equilibria that allow bacterial persistence in human hosts. Nature 449, 843–849 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Yates, A., Chan, C. C., Callard, R. E., George, A. J. & Stark, J. An approach to modelling in immunology. Brief Bioinform. 2, 245–257 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Edelstein-Keshet, L. Mathematical Models in Biology (Random House, New York, 1988).

    Google Scholar 

  5. Murray, J. D. Mathematical Biology (Springer-Verlag, New York, 1989).

    Book  Google Scholar 

  6. Keener, J. P. & Sneyd, J. Mathematical Physiology (Springer, New York, 1998).

    Book  Google Scholar 

  7. Segel, L. A. & Cohen, I. R. Design Principles For the Immune System and Other Distributed Autonomous Systems (Oxford Univ. Press, 2001).

    Google Scholar 

  8. Grimm, V. & Railsback, S. F. Individual-Based Modeling and Ecology (Princeton Univ. Press, 2005).

    Book  Google Scholar 

  9. Lauffenburger, D. A. & Linderman, J. L. Receptors: Models for Binding, Trafficking and Signaling (Oxford Univ. Press, 1993).

    Google Scholar 

  10. Brauer, F. & Castillo- Châavez, C. Mathematical Models in Population Biology and Epidemiology (Springer, New York, 2001).

    Book  Google Scholar 

  11. Armitage, P., Berry. G. & Matthews, J. N. S. Statistical Methods in Medical Research (ed. Malden, M. A.) (Blackwell Science, Oxford, 2001).

    Google Scholar 

  12. Lund, O. Immunological Bioinformatics (The MIT Press, Cambridge, Massachusettes, 2005).

    Book  Google Scholar 

  13. Ewens, W. J. & Grant, G. R. Statistical Methods in Bioinformatics: an Introduction (Springer, New York, 2005).

    Book  Google Scholar 

  14. DeAngelis, D. L. & Gross, L. J. Individual-Based Models and Approaches in Ecology: Populations, Communities, and Ecosystems (Chapman & Hall, New York, 1992).

    Book  Google Scholar 

  15. Stewart, G. R., Robertson, B. D. & Young, D. B. Tuberculosis: a problem with persistence. Nature Rev. Microbiol. 1, 97–105 (2003). Review of the biology of persistent infection with M. tuberculosis .

    Article  CAS  Google Scholar 

  16. Fibonacci, L. & Sigler, L. E. Fibonacci's Liber Abaci: a Translation into Modern English of Leonardo Pisano's Book of Calculation (Springer, New York, 2002).

    Google Scholar 

  17. Dietz, K. & Heesterbeek, J. A. Bernoulli was ahead of modern epidemiology. Nature 408, 513–514 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Dietz, K. & Heesterbeek, J. A. Daniel Bernoulli's epidemiological model revisited. Math. Biosci. 180, 1–21 (2002).

    Article  PubMed  Google Scholar 

  19. Blower, S. & Bernoulli, D. An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it. Rev. Med. Virol. 14, 275–288 (2004).

    Article  PubMed  Google Scholar 

  20. Farr, W. On the Cattle Plague. J. Soc. Sci. 1, 349–351 (1866).

    Google Scholar 

  21. Ross, R. An application of the theory of probabilities to the study of a priori pathometry. Part I. Proc. R. Soc. Lond. A 92, 204–230 (1916).

    Article  Google Scholar 

  22. Ross, R. & Hudson, H. P. An application of the theory of probabilities to the study of a priori pathometry. Part II. Proc. R. Soc. Lond. B 89, 507 (1917).

    Article  Google Scholar 

  23. Ross, R. & Hudson, H. P. An application of the theory of probabilities to the study of a priori pathometry. Part III. Proc. R. Soc. Lond. B 89, 507 (1917).

    Article  Google Scholar 

  24. Kermack, W. O. & McKendrick, A. G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115, 700–721 (1927).

    Article  Google Scholar 

  25. Kermack, W. O. & McKendrick, A. G. Contributions to the mathematical theory of epidemics. II. The problem of endemicity. Proc. R. Soc. Lond. A 138, 55–83 (1932).

    Article  Google Scholar 

  26. Kermack, W. O. & McKendrick, A. G. Contributions to the mathematical theory of epidemics. III. Further studies of the problem of endemicity. Proc. R. Soc. Lond. A 141, 94–122 (1933).

    Article  Google Scholar 

  27. Blower, S. M. et al. The intrinsic transmission dynamics of tuberculosis epidemics. Nature Med. 1, 815–821 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Murphy, B. M., Singer, B. H., Anderson, S. & Kirschner, D. Comparing epidemic tuberculosis in demographically distinct heterogeneous populations. Math. Biosci. 180, 161–185 (2002).

    Article  PubMed  Google Scholar 

  29. Waaler, H., Geser, A. & Andersen, S. The use of mathematical models in the study of the epidemiology of tuberculosis. Am. J. Public Health Nations Health 52, 1002–1013 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blower, S. M., Small, P. M. & Hopewell, P. C. Control strategies for tuberculosis epidemics: new models for old problems. Science 273, 497–500 (1996). Developed a model for designing effective control strategies for TB that was used to assess how suboptimal programmes can contribute to the development of drug resistance.

    Article  CAS  PubMed  Google Scholar 

  31. Murphy, B. M., Singer, B. H. & Kirschner, D. On treatment of tuberculosis in heterogeneous populations. J. Theor. Biol. 223, 391–404 (2003).

    Article  PubMed  Google Scholar 

  32. Dye, C., Garnett, G. P., Sleeman, K. & Williams, B. G. Prospects for worldwide tuberculosis control under the WHO DOTS strategy. Directly observed short-course therapy. Lancet 352, 1886–1891 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Murray, C. J. & Salomon, J. A. Modeling the impact of global tuberculosis control strategies. Proc. Natl Acad. Sci. USA 95, 13881–13886 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Young, D. & Dye, C. The development and impact of tuberculosis vaccines. Cell 124, 683–687 (2006). Used epidemiology modelling to predict the impact of the combined effects of drug treatment and vaccination on TB control.

    Article  CAS  PubMed  Google Scholar 

  35. Dye, C. & Williams, B. G. Eliminating human tuberculosis in the twenty-first century. J. R. Soc. Interface 5, 653–662 (2008).

    Article  PubMed  Google Scholar 

  36. Keeling, M. J., Woolhouse, M. E., May, R. M., Davies, G. & Grenfell, B. T. Modelling vaccination strategies against foot-and-mouth disease. Nature 421, 136–142 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Keeling, M. J. et al. Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape. Science 294, 813–817 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Tildesley, M. J. et al. Optimal reactive vaccination strategies for a foot-and-mouth outbreak in the UK. Nature 440, 83–86 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Aparicio, J. P., Capurro, A. F. & Castillo-Chavez, C. Transmission and dynamics of tuberculosis on generalized households. J. Theor. Biol. 206, 327–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Colijn, C., Cohen, T. & Murray, M. Emergent heterogeneity in declining tuberculosis epidemics. J. Theor. Biol. 247, 765–774 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Grassly, N. C. & Fraser, C. Mathematical models of infectious disease transmission. Nature Rev. Microbiol. 6, 477–487 (2008).

    Article  Google Scholar 

  42. Comstock, G. W. Tuberculosis in twins: a re-analysis of the Prophit survey. Am. Rev. Respir. Dis. 117, 621–624 (1978).

    CAS  PubMed  Google Scholar 

  43. Alcais, A., Fieschi, C., Abel, L. & Casanova, J. L. Tuberculosis in children and adults: two distinct genetic diseases. J. Exp. Med. 202, 1617–1621 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barreiro, L. B. et al. Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis. PLoS Med. 3, e20 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bellamy, R. et al. Tuberculosis and chronic hepatitis B virus infection in Africans and variation in the vitamin D receptor gene. J. Infect. Dis. 179, 721–724 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Hoal-Van Helden, E. G. et al. Mannose-binding protein B allele confers protection against tuberculous meningitis. Pediatr. Res. 45, 459–464 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Khor, C. C. et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nature Genet. 39, 523–528 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Malik, S. et al. Alleles of the NRAMP1 gene are risk factors for pediatric tuberculosis disease. Proc. Natl Acad. Sci. USA 102, 12183–12188 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Marquet, S. & Schurr, E. Genetics of susceptibility to infectious diseases: tuberculosis and leprosy as examples. Drug Metab. Dispos. 29, 479–483 (2001).

    CAS  PubMed  Google Scholar 

  50. Thuong, N. T. et al. A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes Immun. 8, 422–428 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Van Soolingen, D. Molecular epidemiology of tuberculosis and other mycobacterial infections: main methodologies and achievements. J. Intern. Med. 249, 1–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Tanaka, M. M. & Rosenberg, N. A. Optimal estimation of transposition rates of insertion sequences for molecular epidemiology. Stat. Med. 20, 2409–2420 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Tanaka, M. M., Small, P. M., Salamon, H. & Feldman, M. W. The dynamics of repeated elements: applications to the epidemiology of tuberculosis. Proc. Natl Acad. Sci. USA 97, 3532–3537 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gagneux, S. & Small, P. M. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect. Dis. 7, 328–337 (2007).

    Article  PubMed  Google Scholar 

  55. Gagneux, S. et al. Variable host–pathogen compatibility in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 2869–2873 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cohen, T. & Murray, M. Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness. Nature Med. 10, 1117–1121 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Kirschner, D. Dynamics of co-infection with M. tuberculosis and HIV-1. Theor. Popul. Biol. 55, 94–109 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Naresh, R. & Tripathi, A. Modelling and analysis of HIV–TB co-infection in a variable size population. Math. Model. Anal. 10, 275–286 (2005).

    Article  Google Scholar 

  59. West, R. W. & Thompson, J. R. Modeling the impact of HIV on the spread of tuberculosis in the United States. Math. Biosci. 143, 35–60 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Porco, T. C., Small, P. M. & Blower, S. M. Amplification dynamics: predicting the effect of HIV on tuberculosis outbreaks. J. Acquir. Immune Defic. Syndr. 28, 437–444 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Marino, S. & Kirschner, D. E. The human immune response to Mycobacterium tuberculosis in lung and lymph node. J. Theor. Biol. 227, 463–486 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Marino, S. et al. Dendritic cell trafficking and antigen presentation in the human immune response to Mycobacterium tuberculosis. J. Immunol. 173, 494–506 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Megason, S. G. & Fraser, S. E. Imaging in systems biology. Cell 130, 784–795 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Cushing, J. M. An Introduction to Structured Population Dynamics (Society Industrial and Applied Mathematics, Philadelphia, 1998).

    Book  Google Scholar 

  65. Yates, A., Bergmann, C., Van Hemmen, J. L., Stark, J. & Callard, R. Cytokine-modulated regulation of helper T cell populations. J. Theor. Biol. 206, 539–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Yates, A., Callard, R. & Stark, J. Combining cytokine signalling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: a model for cellular decision-making. J. Theor. Biol. 231, 181–196 (2004). Presented a modelling framework that showed how to integrate transcription-factor dynamics with cytokine signalling in a population of T cells.

    Article  CAS  PubMed  Google Scholar 

  67. Stark, J., Chan, C. & George, A. J. Oscillations in the immune system. Immunol. Rev. 216, 213–231 (2007).

    Article  PubMed  Google Scholar 

  68. Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Di Ventura, B., Lemerle, C., Michalodimitrakis, K. & Serrano, L. From in vivo to in silico biology and back. Nature 443, 527–533 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Kholodenko, B. N. Cell-signalling dynamics in time and space. Nature Rev. Mol. Cell Biol. 7, 165–176 (2006).

    Article  CAS  Google Scholar 

  71. Brewer, D., Barenco, M., Callard, R., Hubank, M. & Stark, J. Fitting ordinary differential equations to short time course data. Philos. Transact. A Math. Phys. Eng. Sci. 366, 519–544 (2008).

    Article  Google Scholar 

  72. Jaqaman, K. & Danuser, G. Linking data to models: data regression. Nature Rev. Mol. Cell Biol. 7, 813–819 (2006).

    Article  CAS  Google Scholar 

  73. Kitano, H. Towards a theory of biological robustness. Mol. Syst. Biol. 3, 137 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bailey, N. T. J. The Elements of Stochastic Processes with Applications to the Natural Sciences (Wiley, New York, 1964).

    Google Scholar 

  75. Ermentrout, G. B. & Edelstein-Keshet, L. Cellular automata approaches to biological modeling. J. Theor. Biol. 160, 97–133 (1993). The first study to use stochastic-type models.

    Article  CAS  PubMed  Google Scholar 

  76. Schnappinger, D. et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198, 693–704 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pleissner, K. P. et al. Web-accessible proteome databases for microbial research. Proteomics 4, 1305–1313 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Sassetti, C. M., Boyd, D. H. & Rubin, E. J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48, 77–84 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Sassetti, C. M. & Rubin, E. J. Genetic requirements for mycobacterial survival during infection. Proc. Natl Acad. Sci. USA 100, 12989–12994 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rengarajan, J., Bloom, B. R. & Rubin, E. J. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc. Natl Acad. Sci. USA 102, 8327–8332 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stewart, G. R., Patel, J., Robertson, B. D., Rae, A. & Young, D. B. Mycobacterial mutants with defective control of phagosomal acidification. PLoS Pathog. 1, 269–278 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Beste, D. J. et al. GSMN–TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol. 8, R89 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jamshidi, N. & Palsson, B. O. Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst. Biol. 1, 26 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hart, P. D., Armstrong, J. A., Brown, C. A. & Draper, P. Ultrastructural study of the behavior of macrophages toward parasitic mycobacteria. Infect. Immun. 5, 803–807 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Armstrong, J. A. & Hart, P. D. Phagosome–lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J. Exp. Med. 142, 1–16 (1975).

    Article  CAS  PubMed  Google Scholar 

  86. Russell, D. G. Mycobacterium tuberculosis: here today, and here tomorrow. Nature Rev. Mol. Cell Biol. 2, 569–577 (2001).

    Article  CAS  Google Scholar 

  87. van der Wel, N. et al. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129, 1287–1298 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Jordao, L., Bleck, C. K. E., Mayorga, L., Griffiths, G. & Anes, E. On the killing of mycobacteria by macrophages. Cell. Microbiol. 10, 529–548 (2008).

    CAS  PubMed  Google Scholar 

  89. Ehrt, S. et al. Reprogramming of the macrophage transcriptome in response to interferon-γ and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J. Exp. Med. 194, 1123–1140 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gilchrist, M. et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441, 173–178 (2006). One of the first successful attempts to apply systems-biology approaches to the analysis of the dynamic response of macrophages.

    Article  CAS  PubMed  Google Scholar 

  91. Roach, J. C. et al. Transcription factor expression in lipopolysaccharide-activated peripheral-blood-derived mononuclear cells. Proc. Natl Acad. Sci. USA 104, 16245–16250 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Reed, M. B. et al. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431, 84–87 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Newton, S. M. et al. A deletion defining a common Asian lineage of Mycobacterium tuberculosis associates with immune subversion. Proc. Natl Acad. Sci. USA 103, 15594–15598 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Chang, S., Linderman, J. & Kirschner, D. Multiple mechanisms allow Mycobacterium tuberculosis to continuously inhibit MHC class II-mediated antigen presentation by macrophages. Proc. Natl Acad. Sci. USA 102, 4530–4535 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hund, T. J., Kucera, J. P., Otani, N. F. & Rudy, Y. Ionic charge conservation and long-term steady state in the Luo–Rudy dynamic cell model. Biophys. J. 81, 3324–3331 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Alarcon, T., Byrne, H. M. & Maini, P. K. Towards whole-organ modelling of tumour growth. Prog. Biophys. Mol. Biol. 85, 451–472 (2004). The first published paper to propose a multi-scale approach to understanding a host biological process.

    Article  CAS  PubMed  Google Scholar 

  97. Comisar, W. A., Hsiong, S. X., Kong, H. J., Mooney, D. J. & Linderman, J. J. Multi-scale modeling to predict ligand presentation within RGD nanopatterned hydrogels. Biomaterials 27, 2322–2329 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Kirschner, D. E., Chang, S. T., Riggs, T. W., Perry, N. & Linderman, J. J. Toward a multiscale model of antigen presentation in immunity. Immunol. Rev. 216, 93–118 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Kirschner, D. in In silico Immunology (eds. Flower, D. & Timmis, J.) 289–312 (Springer, New York, 2006).

    Google Scholar 

  100. Flynn, J. L. & Chan, J. Immunology of tuberculosis. Annu. Rev. Immunol. 19, 93–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Wigginton, J. E. & Kirschner, D. A model to predict cell-mediated immune regulatory mechanisms during human infection with Mycobacterium tuberculosis. J. Immunol. 166, 1951–1967 (2001). The first detailed mathematical model developed to study the host response to M. tuberculosis . Showed how virtual deletions and depletions can be used to perform studies that are not currently tractable in wet laboratories and predict mechanisms to explain experimental results.

    Article  CAS  PubMed  Google Scholar 

  102. Sud, D., Bigbee, C., Flynn, J. L. & Kirschner, D. E. Contribution of CD8+ T cells to control of Mycobacterium tuberculosis infection. J. Immunol. 176, 4296–4314 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Marino, S. et al. Differences in reactivation of tuberculosis induced from anti-TNF treatments are based on bioavailability in granulomatous tissue. PloS Comput. Biol. 3, e194 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  104. Segovia-Juarez, J. L., Ganguli, S. & Kirschner, D. Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J. Theor. Biol. 231, 357–376 (2004). The first spatial, stochastic framework for studying granuloma formation in TB. This model predicted previously unidentified features of the immune response that are key to containing infection.

    Article  CAS  PubMed  Google Scholar 

  105. Marino, S., Hogue, I. B., Ray, C. J. & Kirschner, D. E. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 20 Apr 2008 (doi:10.1016/j.jtbi.2008.04.011).

Download references

Acknowledgements

This Review was made possible by financial support from the UK Biotechnology and Biotechnology and Biological Sciences Research Council (BBSRC) via the Centre for Integrative Systems Biology at Imperial College (CISBIC), BB/C519670/1. Work described in this Review was supported, in part, by National Institutes of Health grants to D.K. (NIH R01 LM 009027 and NIH R01 HL 072682).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Young.

Related links

Related links

DATABASES

Entrez Genome Project

Mycobacterium tuberculosis

FURTHER INFORMATION

CISBIC homepage

Comprehensive Microbial Resource of the J. Craig Venter Institute

Pathogen website of the Wellcome Trust Sanger Institute

Proteome 2D-PAGE Database

TARGET

TB Database

The Global Plan to Stop TB 2006–2015

Time Lapse Simulations of Agent Based Models

webTB

Glossary

Ordinary differential equation

A system of equations that is based on the rates (derivatives) of change of dependent variables with respect to time. Most of the interesting differential equations are nonlinear and, with a few exceptions, cannot be solved exactly. Approximate solutions are determined using computer simulations.

Mendelian

Genetic inheritance of disease susceptibility through a single gene.

TH1

After priming by exposure to signals from antigen-presenting cells, T cells undergo a process of maturation to their final effector phenotype. Cytokines produced by TH1 cells (for example, interferon-γ) enhance the antimicrobial activity of macrophages and have an important role in protection against Mycobacterium tuberculosis. Cytokines produced by TH2 cells (for example, interleukin-4) are important in promoting antibody responses. Cells that have not committed to the TH1 or TH2 lineages are referred to as TH0.

Linkage analysis

A test for co-inheritance of genetic markers along with disease susceptibility in family groups.

Cellular automata

Discrete models that consist of a regular grid of cells, each of which has a finite number of states. The state of a cell at time t is a function of the states of a finite number of cells (called its neighbourhood) at time t−1. Every cell has the same rule for updating that is based on the values in this neighbourhood. Each time the rules are applied to the whole grid, a new generation is created.

Granuloma

A roughly spherical structure that comprises a focus of infection that is surrounded by immune cells. Dead cells at the centre of the granuloma may decompose, leaving a 'cheesy' residue that is referred to as caseum.

Markov chain

A discrete-time stochastic process with the property that the next state solely depends on the present state, but not on the previous states. If a sequence of states has the Markov property, then every future state is conditionally independent of every prior state.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, D., Stark, J. & Kirschner, D. Systems biology of persistent infection: tuberculosis as a case study. Nat Rev Microbiol 6, 520–528 (2008). https://doi.org/10.1038/nrmicro1919

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1919

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing